

MÄLARDALEN UNIVERSITY

SCHOOL OF INNOVATION, DESIGN AND ENGINEERING

VÄSTERÅS, SWEDEN

Thesis for the Degree of Bachelor of Science in Computer Network Engineering

15 credits

GET IN SYNC WITH TSN
A Study of Partially Synchronized TSN Networks

Andreas Johansson

ajn19017@student.mdu.se

Examiner: Mohammad Ashjaei

 Mälardalen University, Västerås, Sweden

Supervisor: Daniel Bujosa Mateu

 Mälardalen University, Västerås, Sweden

2022-06-04

Andreas Johansson Get In Sync With TSN

 ii

ABSTRACT

Automotive and industrial embedded systems are increasingly dependent on real-time

capabilities. TSN aims to offer flexibility of the traffic by providing Ethernet with hard and

soft real-time capabilities which allows for integration with other protocols in legacy systems.

TSN requires the network to be fully synchronized to achieve high performance. However,

there are cases where legacy systems are not able to synchronize with TSN. These systems

might nonetheless be able to synchronize with each other through their legacy

synchronization mechanisms.

In this thesis, we have investigated effects in terms of jitter and clock drift in endpoints by

synchronizing them with each other and passing communication through an unsynchronized

intermediary TSN switch. Our results revealed that with the introduction of TSN, jitter was

reduced, while clock drift between endpoints and the TSN switch was introduced. The results

show that negative clock drift leads to packets missing their scheduled TSN windows and

positive drift leads to packets being dropped in the switch buffer queues. We proposed two

solutions in order to manage the experienced clock drift. In one solution we statically changed

the switch cycle, and in the other, we let the receiver node dynamically update the sending

period in the sender node. In the static solution, the clock drift was reduced from negative

eight microseconds per second to two nanoseconds per second. In the dynamic solution, a

packet error rate of one per 100 seconds was reduced to zero errors in 19 hours.

Andreas Johansson Get In Sync With TSN

 iii

ABBREVIATIONS

ARP Address Resolution Protocol

AVB Audio Video Bridging

BMCA Best Master Clock Algorithm

CAN Controller Area Network

CBS Credit Based Shaper

CDT Control Data Traffic

CSMA/CD Carrier-sense multiple access with collision detection

FIFO First In, First Out

FQTSS Forwarding and Queuing Enhancements for Time-Sensitive Streams

GCL Gate Control List

gPTP Precision Time Protocol

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers

ISP Internet Service Provider

LAN Local Area Network

MAC Medium Access Control

NTP Network Time Protocol

PCP Priority Code Point

PDM Propagation Delay Measurement

NP Nondeterministic Polynomial

OS Operating System

QoS Quality of Service

SRP Stream Reservation Protocol

ST Scheduled Traffic

TAS Time-Aware Shaper

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TSN Time-Sensitive Networking

TTI Transport of Time-synchronization Information

UDP User Datagram Protocol

VLAN Virtual LAN

WAN Wide Area Network

Andreas Johansson Get In Sync With TSN

 iv

TABLE OF CONTENTS

1. Introduction .. 1

2. Background ... 3

2.1. Ethernet ... 3

2.2. Switched Ethernet ... 3

2.3. Audio Video Bridging .. 4

2.4. Time-Sensitive Networking .. 5

2.4.1. Clock Synchronization ..5

2.4.2. Scheduling ...7

3. Related work ... 9

4. Problem formulation .. 10

5. Method ... 11

6. Experiment construction and implementation ... 12

6.1. Network structure and hardware ... 12

6.2. Experiments ... 13

6.2.1. Initial scenarios .. 13

6.2.2. Extreme scenarios ... 15

6.2.3. Implementing solutions .. 16

7. Results .. 19

7.1. Initial scenarios .. 19

7.1.1. Unsynchronized endpoints without TSN switch .. 19

7.1.2. Synchronized endpoints without TSN switch ... 21

7.1.3. Synchronized endpoints with intermediary TSN switch .. 22

7.1.4. Summary ... 23

7.2. Extreme scenarios ... 23

Andreas Johansson Get In Sync With TSN

 v

7.2.1. Synthetic negative clock drift ... 23

7.2.2. Synthetic positive clock drift .. 24

7.3. Solutions .. 25

7.3.1. Static solution ... 25

7.4. Dynamic solution to extreme scenarios .. 27

8. Discussion .. 28

9. Conclusions .. 31

10. Future work ... 32

Appendix A. Switch configuration ... 33

Appendix B. Simple sender node code ... 35

Appendix C. Sender node code, dynamic solution .. 36

Appendix D. Receiver node code, dynamic solution ... 38

Appendix E. Sender node code with payload .. 40

References .. 41

Andreas Johansson Get In Sync With TSN

 vi

LIST OF FIGURES
Figure 2-1: Best Master Clock Algorithm ... 6

Figure 2-2: Propagation Delay Measurement operation .. 6

Figure 2-3: Credit Based Shaper operation .. 7

Figure 2-4: Time-Aware Shaper overview ... 8

Figure 6-1: Network topology .. 12

Figure 6-2: Priority Code Point inside 802.1Q-header ... 13

Figure 6-3: Scenario 1 – unsynchronized endpoints. .. 14

Figure 6-4: Scenario 2 – synchronized endpoints ... 14

Figure 6-5: Scenario 3 - synchronized endpoints, unsynchronized TSN switch 14

Figure 6-6: Negative reception time drift in the receiver, leading to packets missing their schedule .. 15

Figure 6-7: Positive reception time drift in the receiver, leading to queued packets 16

Figure 6-8: Adjusting the cycle time in the switch ... 17

Figure 6-9: Trendline over a set of points ... 18

Figure 7-1: Unsynchronized sender node without TSN (jitter). ... 19

Figure 7-2: Unsynchronized sender node without TSN (trendline). .. 20

Figure 7-3: Unsynchronized receiver node without TSN (jitter). .. 20

Figure 7-4: Unsynchronized receiver node without TSN (trendline). ... 21

Figure 7-5: Synchronized receiver node without TSN (jitter). ... 21

Figure 7-6: Synchronized receiver node without TSN (trendline) ... 22

Figure 7-7: Synchronized receiver node with intermediary TSN switch ... 22

Figure 7-8: Synthetic negative clock drift in the receiver .. 24

Figure 7-9: Synthetic positive clock drift in the receiver ... 25

Figure 7-10: Packets lost in Wireshark ... 25

Figure 7-11: Static solution ... 26

Figure 7-12: Receiver node, static solution ... 26

Figure 7-13: Dynamic solution with average drift accounted for ... 27

Figure 8-1: Dynamic solution registers different types of drift ... 30

Figure A-1: Switch menu ... 33

Figure A-2: Switch port configuration .. 33

Figure A-3: TAS configuration. ... 34

LIST OF TABLES
Table 7-1: Jitter and drift in initial scenarios ... 23

Table B-1: Code for periodic traffic .. 35

Table C-1: Sender node code, dynamic solution ... 37

Table D-1: Receiver node code, dynamic solution .. 39

Table E-1: Sender node code with payload ... 40

https://studentmdh-my.sharepoint.com/personal/ajn19017_student_mdu_se/Documents/Årskurs%203/DVA%20333%20-%20Examensarbete/Thesis/Thesis%202022-05-18.docx#_Toc103848011
https://studentmdh-my.sharepoint.com/personal/ajn19017_student_mdu_se/Documents/Årskurs%203/DVA%20333%20-%20Examensarbete/Thesis/Thesis%202022-05-18.docx#_Toc103848014

Andreas Johansson Get In Sync With TSN

 1

1. Introduction

Ethernet is a family of computer network technologies that are known and used worldwide.

Ethernet connects our computers and devices we use daily to different geographical networks,

whether they span from a Local Area (LAN) to a Wide Area (WAN). However, in doing so,

its network service is mostly based around the use of Best-Effort traffic with limited options

for Quality of Service (QoS)1 [1]. When best-effort traffic is sent from one point to another, it

is delivered as the name implies, with a best-effort. There are no guarantees that traffic will

arrive on time for time-sensitive applications. QoS might be employed by network

administrators or Internet Service Providers (ISP) to try and address these issues. However,

QoS is limited in its use and is not suitable for systems where timely packet deliveries are

required. Systems with these requirements are called real-time systems [2]. Real-time systems

are required to perform their actions within specified time frames i.e., deadlines, to achieve

deterministic behavior.

Several network protocols can be used for real-time communication. Many of these protocols,

such as Controller Area Network (CAN) or FlexRay specify their own physical layer.

Therefore, in order to take advantage of the determinism provided by these protocols, it is

necessary to use their specific cables and devices. However, depending on the application,

trying to integrate them with other technologies can be difficult. Instead of migrating systems

to dedicated real-time protocols, it would be logical to try and provide Ethernet with these

features since it is a cheap, well-known, and widely used protocol. Furthermore, the Ethernet

standard provides high bandwidth which can be interesting to take advantage of in real-time

applications. The use of high bandwidth is especially relevant, according to [3], the next

generation of systems might increase the traffic in real-time networks by two orders of

magnitude.

Due to QoS limitations in Ethernet, the IEEE Audio Video Bridging (AVB) task group was

created in 2005 [4], [5]. The goal of the task group was to provide real-time behavior for

audio-video streaming over Ethernet. Its scope was later broadened in 2012 and the task

group was renamed to the Time-Sensitive Networking (TSN) task group. The TSN task group

aims to develop technologies that suit other systems such as automation and automation

systems. TSN is a promising real-time solution that provides flexibility of traffic. With TSN,

generic traffic can flexibly share the same network as time-critical traffic by dividing traffic

into different classes, flows, and priorities. It uses traffic shapers like the Credit-Based Shaper

-

1 QoS is a mechanism that is used to prioritize different data traffic flows through a network [25].

Andreas Johansson Get In Sync With TSN

 2

(CBS) and the Time-Aware Shaper (TAS) to achieve satisfactory real-time communication.

However, the shapers require the network to be fully synchronized since switches and devices

need to work in unison for TSN to perform properly.

A TSN deployment could prove to be cost-effective and beneficial for companies.

Researchers aim to extend current legacy networks by adopting TSN into them and providing

them with real-time capabilities [6], [7]. However, such integrations present challenges in

terms of synchronization and scheduling. As mentioned, TSN requires a network to be fully

synchronized to achieve high performance in terms of delay and jitter [8]. Because of these

performance challenges, we are investigating and analyzing the effects of partial

synchronization in TSN. For example, networks where only the endpoints are synchronized or

those that are left unsynchronized can be considered partially synchronized networks. The

investigation is motivated in the sense that it could help researchers improve TSN and provide

valuable information on how synchronization impacts a network. Viable solutions to the

problems posed will also be investigated.

Since TSN is supposed to integrate with different legacy systems, it is interesting to analyze

results from heterogeneous networks where operating systems and protocols have notable

differences. This thesis is following up on Nguyen and Nasiri’s work [9] on analyzing the

performance of non-synchronized heterogeneous TSN networks. We are, in turn,

investigating the effects of synchronized endpoints in a similar heterogeneous network

through a series of experiments. To obtain consistent results the experiments are conducted

with the same endpoints. The effects of a partially synchronized Ethernet network will be

compared to a partially synchronized TSN network. In both cases, only the endpoints will be

synchronized with each other.

Andreas Johansson Get In Sync With TSN

 3

2. Background

In the background section, an overview of the hurdles with Ethernet is given and the solutions

switched Ethernet offers. Moreover, switched Ethernet has its own set of problems when used

together with real-time constrained traffic which can be solved with AVB and/or TSN.

2.1. Ethernet

Inspired by the Aloha network, Bob Metcalfe invented Ethernet in the early 1970s [10, pp. 5-

8]. ALOHAnet was used as a radio network to connect the different Hawaiian Islands while

sharing the same communications channel. Sharing the channel means having some sort of

system where information could be sent and received on the same channel by different nodes.

ALOHAnet used acknowledgments for confirmation of successful communication, and if no

acknowledgment was received the communication attempt was assumed to have collided with

an attempt by another node. Collisions generated a random backoff time with subsequent

retransmission.

Metcalfe expanded upon ALOHAnet by suggesting a communication protocol that detected

collisions and preemptively avoided collisions by listening to the channel before starting a

transmission [10, pp. 5-10]. He also further developed ALOHAnet’s backoff timer for

collision detection. The technology later became known as Ethernet and the protocol for

channel access was named Carrier Sense Multiple Access with Collision Detect (CSMA/CD).

The Ethernet standard became published in 1980 and with help of the Institute of Electrical

and Electronics Engineers (IEEE), it was pushed to become a standard for LANs. The IEEE

802.3 Ethernet standard is the most popular network technology in use today, being a

worldwide standard. Ethernet’s most prominent features are the cost-effectiveness of

implementation and the throughput it offers [11].

Wired Ethernet was half duplex in its infancy, meaning that communication could only occur

in one direction at a given moment [10, pp. 28-29]. Speakers needed to listen to the shared

channel before sending to avoid collisions, and even then, if two or more speakers decide to

speak at the same time, collisions would occur. In terms of reliability and dependability, using

such communication creates delays in message delivery, which in turn is unsuitable for time-

critical applications.

2.2. Switched Ethernet

Before switches were introduced to Ethernet, hubs were used to connect several devices to a

single communication channel. However, all incoming messages to the hub become repeated

and broadcasted to all outgoing network ports on the hub [12]. This method of

communication is inefficient since not all devices might be interested in listening to the

speaking device at the given moment. Apart from excessive resource usage the method also

introduces a greater potential for collisions. Switches, on the other hand, solve this problem

Andreas Johansson Get In Sync With TSN

 4

by keeping track of connected devices through Medium Access Control (MAC) addresses

with the Address Resolution Protocol (ARP) and then placing the messages into buffers and

queues. The simplest queuing method for a switch is First In, First Out (FIFO) where

incoming messages simply are put in a queue to be sent out through the corresponding output

port. A switch also negotiates with connected devices to operate in full-duplex, if possible, to

eliminate collisions.

The use of traditional Ethernet switches solves the problem of collision domains within a

LAN and allows for high throughput. However, they are still limited in their capabilities of

providing predictable service to time-critical real-time applications [13]. Since Ethernet

switches make use of simple queuing mechanisms without scheduling there are no guarantees

in packet delivery. For example, in the case of several nodes simultaneously sending data

through a switch to the same node, there is no way to tell how far back a message will be in

the queue, which limits predictability.

2.3. Audio Video Bridging

AVB is the predecessor of TSN and was developed by the IEEE AVB Task Group. AVB

aimed to provide switched Ethernet networks with real-time capabilities such as

synchronization, reliability, and low latency [14], [15]. The task group introduced several

standards such as:

• IEEE 802.1AS - Timing and Synchronization

• IEEE 802.1Qav - Forwarding and Queuing Enhancements (FQTSS)

• IEEE 802.1Qat - Stream Reservation Protocol (SRP)

Devices in a real-time network must share the same notion of time to be able to act in unison.

802.1AS is the standard that defines clock synchronization within AVB and TSN networks. It

can provide synchronization errors of less than one microsecond. 802.1Qav defines

forwarding and queueing rules to guarantee a timely fashion reception of messages. AVB also

introduced the CBS which shapes traffic flows of different traffic classes and priorities while

providing fairness, so lower priority traffic classes do not become starved. These traffic

classes will be discussed later in section 2.4.2.1 Credit-Based Shaper. 802.1Qat is a protocol

that reserves resources throughout a network. The resources are reserved in the data flow

path, also called the stream. In this fashion, devices can reserve bandwidth to meet necessary

QoS requirements when needed. AVB still falters with fulfilling requirements needed by hard

real-time systems since messages can be delayed as CBS does not ensure zero jitter, which

makes it not fully deterministic. Moreover, AVB does not handle channel congestion well.

Andreas Johansson Get In Sync With TSN

 5

2.4. Time-Sensitive Networking

As mentioned in the introduction, by 2012 the AVB task group was renamed to the TSN task

group. The rebranding was made to further develop real-time technologies suitable for

industries such as automation and automotive industries [4], [5]. TSN builds upon AVB

standards and is aiming to provide Ethernet with deterministic features able to be used in hard

real-time systems [16]. The TSN task group introduced all-around improvements to the AVB

standard. For example, they revised the clock synchronization in 802.1AS and aimed to

support time-triggered traffic by improving the queuing mechanism of AVB. This was done

in the form of TAS in the IEEE 802.Qbv standard. TSN also introduced a new traffic class of

higher priority, called Scheduled Traffic (ST) as well as setting a maximum frame-size

restriction on all traffic classes.

2.4.1. Clock Synchronization

To achieve deterministic behavior in a TSN network it needs to be synchronized. Devices

throughout the network need to share the same notion of time to be able to fully cooperate

[17], [6]. The clock synchronization that takes place in TSN is described in the IEEE 802.1AS

standard. It is performed with Precision Time Protocol (gPTP) which can synchronize devices

in the order of nanoseconds. Several mechanisms are used when synchronizing clocks, such

as the Best Master Clock Algorithm (BMCA), Propagation Delay Measurement (PDM), and

Transport of Time-synchronization Information (TTI).

The BMCA determines which candidate clock is most suitable to act as a grandmaster clock,

i.e., the reference clock for the network [6], [18]. The grandmaster selection is done by

comparing several properties of the candidate in announce messages which are broadcasted

from time-aware systems. Time-aware systems receiving announce messages pick the system

that is believed to have the best clock to be the grandmaster, they also compute what state the

port is going to be. Ports are determined to be master, slave, passive, or disabled ports in a

hierarchical fashion where ports connected to the grandmaster system become slaves. Master

and slave ports are used for synchronization purposes and passive ports are used to avoid

synchronization loops. See Figure 2-1 for an overview of BMCA and its selection of ports and

grandmaster clock.

Andreas Johansson Get In Sync With TSN

 6

Figure 2-1: Best Master Clock Algorithm

The PDM mechanism is tasked with calculating the delay between systems in the time-aware

domain, see Figure 2-2. This is done by timestamping messages from the different systems,

comparing them, and calculating the delay in the requesting system [6]. The delay is

calculated with the formula: 𝐷𝑒𝑙𝑎𝑦 =
(𝑇4−𝑇1)−(𝑇3−𝑇2)

2
. The TTI is a process that takes place

once a grandmaster clock is decided and PDM executed. During the TTI process systems send

their local time through their master ports where the receiver adds the measured delay and

updates their local time. Thus, the network becomes fully synchronized.

Figure 2-2: Propagation Delay Measurement operation

Andreas Johansson Get In Sync With TSN

 7

2.4.2. Scheduling

There are two main schedulers, or shapers, within the TSN framework, CBS, and TAS. These

shapers impose rules for queuing and forwarding of messages, as well as scheduling traffic on

output ports [16]. Both shapers are explained in more detail in the following sections.

2.4.2.1. Credit-Based Shaper

CBS is the algorithm used to decide which AVB queue is permitted to send. AVB frames are

typically of class A or B where A is the frame with the highest priority [19], [20]. Outside the

CBS there can also be Best-Effort traffic and ST. CBS works similar to a “leaky bucket”

where frames of the highest priority are sent first. However, if there is an uninterrupted flow

of frames CBS makes sure that frames of lower priority do not become starved. Figure 2-3

shows an example of the CBS operation. In the figure there are two defined slopes, idleSlope

and sendSlope, there is also a zero line. Messages can only be transmitted when their credit

value is above zero. In the figure, three messages are queued for sending. Since m1 in this

example is of higher priority it will start sending first and subsequently consume credit as

shown with the sendSlope. When m1 is done sending it has a credit value below zero as

shown in line 1, this means the next message queued for class A cannot be sent. M2 on the

other hand, which has gained a positive credit will start sending its message and go into its

own sendSlope. Message m3 will be sent when m2 is done since class A’s credit value is

above zero. If no frames are queued and credit is positive, the credit is set to zero, as shown

after m3 is sent. If the credit is negative with no frames queued, credits will be gained with the

rate of idleSlope until zero, as shown in line 2. It is performance beneficial for TSN to

combine CBS with TAS. TAS is explained in the upcoming section.

Figure 2-3: Credit Based Shaper operation

Andreas Johansson Get In Sync With TSN

 8

2.4.2.2. Time-Aware Shaper

TAS was defined in the IEEE 802.1Qbv standard and enables time-triggered communication

with the use of the network clock, in combination with time-aware gates [19], [20]. There can

exist up to eight time-aware gates which reside on every egress port of a TSN switch. In

Figure 2-4 an overview of the TAS is shown. In this figure, four FIFO queues are considered

containing Control Data Traffic (CDT), AVB queues A and B as well as best-effort Traffic.

Messages are queued until their gates open at a scheduled time. A Gate Control List (GCL)

decides which gates are open and closed in each time slot. Here, such instances are marked

with 1 in the GCL table for open gates and 0 for closed gates. When the GCL reaches the

bottom of its list it repeats.

Figure 2-4: Time-Aware Shaper overview

Traffic scheduled in slots like in a Time Division Multiple Access (TDMA) scheme provides

some advantages. It offers great support for time-triggered communication since time-

scheduled messages are known and can be adjusted with minimal jitter and latency. However,

the effects are worse for event-triggered traffic where the origin time of generated messages is

unknown.

Andreas Johansson Get In Sync With TSN

 9

3. Related work

There are several studies focused on studying and evaluating TSN shapers and different

synchronization methods as well as improvements to these. This thesis is not focused on

studying the synchronization mechanism or improving it, but rather on the consequences a

network or system may experience when synchronization is not present in some parts of the

TSN network. Since we explore the possibilities of integrating TSN together with legacy

protocols we must also consider scenarios where some systems cannot synchronize with TSN.

For example, nodes might only be able to synchronize with themselves if they are not fully

compatible with TSN.

Chouksey et al. [21] conducted an experimental study on the coexistence of TSN and non-

TSN devices which is similar to what we aim to do. In this thesis we are using non-TSN

endpoints connected to a TSN switch to measure the effects of non-synchronized. In their

work, they used a TSN gateway to convert non-TSN devices packets to TSN by adding a

VLAN TAG. In their work, they observed difficulties in topology discovery and time

synchronization of devices. However, these problems were solved with modifications to the

configuration, which achieved promising results.

Barzegaran et al. [7] present work similar to this thesis. While we are focusing on analyzing

and evaluating the effects of end systems that are synchronized with each other they relaxed

the synchronization requirements on end systems. In our work, end systems are assumed to

not be able to synchronize with the TSN infrastructure, but with each other, through

synchronization protocols that are not compatible with TSN ones. In their work, they

mentioned that it is often not realistic for systems like microcontrollers and legacy systems to

have TSN capabilities and be synchronized with the TSN network. Barzegaran et al. finally

concluded a solution to provide real-time guarantees for time-critical traffic.

Other works that are essential to this study are the evaluations of shapers, scheduling, and

synchronization. A broad understanding of the functions of TSN is needed to evaluate the

effects of the lack of synchronization. Kim et. al [22] show in their work how unscheduled

high-priority traffic in TSN may induce negative consequences such as high delay and jitter in

the scheduled traffic. These effects were avoided by introducing separate protection to the

standard TAS schedule. Le et al. [17] present a simulation model for TSN and utilize

synchronization and TAS to obtain high accuracy scheduling. Mateu et. al [6] show how

clock synchronization in TSN plays an essential role when integrating a legacy EtherCAT

network into a TSN network. Reports including heterogeneous network approaches are

interesting to compare to this work. Especially since the end systems in this thesis will be

separated, synchronization-wise, from the TSN network. In [6] it was concluded that their

proposed synchronization mechanism obtained at least three times higher precision among

nodes compared to using no synchronization mechanism.

Andreas Johansson Get In Sync With TSN

 10

4. Problem formulation

Embedded systems in automotive and industrial applications are increasingly dependent on

real-time capabilities and therefore it is important to meet this need. TSN aims to offer hard

and soft real-time capabilities to Ethernet by having flexible management of traffic which

allows for integration with other protocols in legacy systems. Using Ethernet technology,

network deployment with TSN would be cost-effective [20].

TSN requires the network to be fully synchronized to achieve high performance in terms of

delay and jitter [8]. However, it would be important to analyze network behavior when parts

of the network are not synchronized. For example, there are cases where legacy nodes do not

support clock synchronization and they cannot be synchronized with the rest of the network.

There are also cases where endpoints such as microcontrollers are desired in the network

because of their price and simplicity. However, these units may not support the clock

synchronization mechanism provided by TSN but may synchronize with each other with the

use of their own synchronization mechanisms. This thesis is therefore motivated by analyzing

network behavior when diverting from best practice synchronization recommendations.

We would like to investigate and see the effects in such partially synchronized networks

where only the endpoints are synchronized. It is implied that some performance issues will

exist by not fully synchronizing the network since devices in the TSN network need to

perform in unison to guarantee bounded latency and avoid jitter. The research questions we

intend to answer are:

• With regard to clock drift and jitter, what are the effects of only synchronizing

endpoints through their legacy synchronization mechanisms in a heterogeneous TSN

network?

o If the effects result in clock drift between devices, in what ways can we

manage this and is it possible without interfering with the TSN switch?

To answer these questions, we are limiting the scale of the experiment by reducing

complexity and using a small network consisting of two nodes and a TSN switch. This

network is smaller in size and not comparable to networks used in real applications. However,

with thorough research methods, we believe the results can be indicative of the function in

real networks, thus they can be extrapolated and applied in real scenarios.

Andreas Johansson Get In Sync With TSN

 11

5. Method

The functions and intricacies of TSN are complex and therefore we are conducting a literature

review about TSN, its background, and mechanisms. The literature review is also necessary to

study the related works in the field to obtain an understanding of what is done today in terms

of research. Additionally, approaching the problem described in the problem formulation can

be done pragmatically, via experiments. According to Säfsten and Gustavsson [23],

experiments are an effective way to investigate how systems behave under different scenarios

and circumstances. We are designing experiments as an improvement on earlier experiments

done by students at MDH by adding partial synchronization into a TSN network and

analyzing if the synchronization is beneficial or not. The experiments help us gather relevant

information and quantitative data about the network’s behavior during different

synchronization scenarios which we are analyzing and evaluating.

The methodology is structured according to the system development research process as

described by Nunamaker, Chen, and Purdin [24]. This is an iterative process with the

following steps:

(1) Construct a conceptual framework.

(2) Develop a system architecture.

(3) Analyze and design the system.

(4) Build the prototype.

(5) Observe and evaluate the system, then iterate to (1) if needed.

All steps are not covered in this thesis but serve as a fundamental base for the research

process that is carried out in this thesis:

(1) Gathering information via literature reviews.

(2) Design an experiment with a partially synchronized heterogeneous TSN network.

(3) Building and setting up the experiment.

(4) Investigating, analyzing, and evaluating the effects of the network not being fully

synchronized.

(5) If performance issues are found, propose a solution to the issues and iterate to (1) or

(2).

Andreas Johansson Get In Sync With TSN

 12

6. Experiment construction and implementation

To answer the questions posed in the problem formulation several experiments were designed

and carried out. The experiments were constructed to investigate the effects of having a

partially synchronized TSN network. In the network used, the endpoints synchronized with

each other and a TSN switch acted as a “black box”, meaning that the endpoints had no

knowledge of the TSN switch and did not synchronize with it. The design and implementation

are described in the following sections.

6.1. Network structure and hardware

We constructed a small network consisting of two microprocessors; Raspberry Pi 3 Model B2

running Raspberry Pi OS3 and a SoC-E (System on Chip engineering) Multiport TSN kit

switch4 was constructed, see Figure 6-1. The Raspberry Pi’s operate on 100 Base Ethernet

while the TSN switch operates on 1000 Base Ethernet. The Raspberry Pi’s were only

configured to synchronize their software clocks with each other, this was done with Network

Time Protocol (NTP). However, any clock synchronization protocol can be used between the

endpoints since we are emulating scenarios where the TSN switch is unable to synchronize

with the endpoints. The TAS windows in the switch were configured according to the receiver

node’s maximum allowed throughput. Information on how to configure the switch can be

found in Appendix A. Switch configuration.

-

2 Raspberry Pi 3 Model B. [Online]. Available: https://www.raspberrypi.com/products/raspberry-pi-3-model-b/

3 Raspberry Pi OS. [Online]. Available: https://www.raspberrypi.com/documentation/computers/os.html

4 MTSN Kit: a Comprehensive Multiport TSN Setup. [Online]. Available: https://soc-e.com/mtsn-kit-a-

comprehensive-multiport-tsn-setup/

Figure 6-1: Network topology

Andreas Johansson Get In Sync With TSN

 13

6.2. Experiments

Descriptions of the different experiment scenarios can be found below. First, a baseline

experiment was constructed to understand how the network performs without TSN and any

kind of clock synchronization between the endpoints. Further experiments with TSN and

clock synchronization were constructed as well as suggested solutions to emerging problems.

To enable sending of periodic traffic that could be processed by the TSN switch the Python

module Scapy5 was used in the running scripts on the sender and receiver node to forge

Ethernet frames. The frames must have Virtual LAN (VLAN) information, also known as

802.1Q to be priority-handled by TSN. TSN makes use of the Priority Code Point (PCP) field

inside the 802.1Q-header (see Figure 6-2) which consists of three bits, meaning the PCP can

assume eight different values. These values in turn correspond to the eight time-aware gates

within TAS. See Appendix B to Appendix E for the Python scripts that were used during

different experiment scenarios. Packets sent from the sender node as well as packets received

in the receiver node were logged in the network protocol analyzer Wireshark6.

Figure 6-2: Priority Code Point inside 802.1Q-header

6.2.1. Initial scenarios

Three different experiment scenarios were set up. The first experiment was designed to gather

data on how the network behaves between two endpoints, without any influence of a TSN

switch or clock synchronization, see Figure 6-3. The second experiment was constructed as a

-

5 Scapy is a tool that allows the user to manipulate network packets. It can be used to forge and decode packets

of various protocols. [Online]. Available: https://scapy.readthedocs.io/en/latest/index.html

6 Wireshark. [Online]. Available: https://www.wireshark.org/

Andreas Johansson Get In Sync With TSN

 14

comparison to the first with the addition of clock synchronization by NTP between the

endpoints, without the use of a TSN switch, see Figure 6-4. Finally, an experiment with

synchronized endpoints and an unsynchronized TSN switch was constructed, see Figure 6-5.

The third experiment was made to observe the behavior when two already synchronized

endpoints are subjected to an intermediary TSN switch that has its own notion of time.

Figure 6-3: Scenario 1 – unsynchronized endpoints.

Figure 6-5: Scenario 3 - synchronized endpoints, unsynchronized TSN switch

In the third scenario with the introduction of the TSN switch, we had to decide on a window

size for the prioritized packets, i.e., the scheduled packets. In our case, the packets forged by

Scapy should only be allowed during their allotted TAS windows, and two packets should not

be allowed to traverse together in one TAS window. Since the Raspberry Pis use Base 100

Figure 6-4: Scenario 2 – synchronized endpoints

Andreas Johansson Get In Sync With TSN

 15

Ethernet and the Scapy packets were 60 bytes, we could calculate the minimum window size

by dividing the packet size with the throughput accordingly:

Packet size

Throughput
=

60 bytes

100 Mbit/s
=

480 bits

100 Mbit/s
⇔ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑤𝑖𝑛𝑑𝑜𝑤 = 4800 𝑛𝑠

However, when testing these window sizes, packets were not traversing their TSN windows.

When extending the window sizes, it was discovered that packets flowed freely at a window

size of 6725 ns. The windows were then extended by 10% to account for any issues jitter may

cause giving 6725 · 1.1 ≈ 7400 ns.

In the three experiments, 1000 packets were sent from the sender- to the receiver node in one-

second intervals and logged in both endpoints with Wireshark.

6.2.2. Extreme scenarios

In the scenario with synchronized endpoints and an unsynchronized TSN switch, the receiver

node experiences reception time drift in the messages since it does not share the same notion

of time as the TSN switch (see the results section 7.1.3). However, the reception drift is small,

which means that within 1000 seconds and 1000 packets no errors were noticed in the

network.

We hypothesized that if there is a negative reception time drift in the receiver node,

eventually packets will miss their windows in the TSN switch. See Figure 6-6 for an

illustration of this scenario. The opposite scenario was also hypothesized to be plausible, i.e.,

when the receiver node experiences a positive reception time drift. In this scenario, packets

will be sent in every TSN switch window. However, packets will instead be queued in the

switch since it only allows for one packet to be sent through said window, see Figure 6-7. To

investigate these extreme circumstances new experiments were conducted.

Figure 6-6: Negative reception time drift in the receiver, leading to packets missing their schedule

Andreas Johansson Get In Sync With TSN

 16

Figure 6-7: Positive reception time drift in the receiver, leading to queued packets

The experiments for the extreme scenarios were constructed in the same manner as the initial

scenarios in section 6.2.1. However, in some cases, we modified the sending intervals and/or

the size of the TAS cycle time in the switch to artificially construct a larger negative reception

time drift in the receiver. Specifically, the sending interval of packets was kept at one second,

but the switch cycle was decreased to 990 milliseconds. According to our hypothesis, packets

would miss their window every ~100 packets since the TSN switch will have a synthetic

clock drift of negative one second every 100 seconds compared to the endpoints.

To test the opposite scenario where we introduce an artificial positive reception time drift in

the receiver node the sending interval was set to 500 milliseconds in the sender node while the

TSN switch cycle was kept at one second. The packets were also reconstructed to carry data,

which were used for labeling, to keep track of eventual packets being lost. Lost packets were

thought possible to occur when queue buffers become overflowed in the switch. See

Appendix E for the script which includes a payload in the packets.

6.2.3. Implementing solutions

Legacy networks can exhibit different problematic characteristics. In homogeneous networks,

all endpoints share the same drift, but this is not true for heterogeneous networks with

different sets of endpoints. Therefore, we considered solutions that could cope with drift

varying between different subnetworks, as well as drift varying the same way throughout a

homogeneous network. Other characteristics to account for were whether the drift is positive

or negative.

6.2.3.1. Adjusting cycle time in the switch

Upon reviewing the results from extreme scenarios where we induced a synthetic clock drift,

we suggested measuring the perceived drift in the receiver node and then updating the TSN

switch accordingly. For a measured negative drift of ten milliseconds per second in the

receiver, we hypothesized that the instances where a critical error takes place would be

halved if the switch cycle were increased by five milliseconds. A critical error, in this case,

Andreas Johansson Get In Sync With TSN

 17

would be when a packet misses a window in the switch. By adjusting the cycle time in the

switch according to the endpoints notion of time we should improve the performance of the

network.

To improve the solution, we tried to accurately measure the drift in the receiver node by

having both the endpoints send packets every second as well as having the switch cycle time

set to one second. This is the same type of experiment as the initial experiment in Figure 6-5.

After 1000 seconds (1000 packets) we measured the reception drift in the receiver node. By

dividing the measured drift by 1000 we received the clock drift per second and adjusted the

cycle time in the switch, see Figure 6-8.

Figure 6-8: Adjusting the cycle time in the switch

6.2.3.2. Dynamic adjustments of sender interval

The second proposed solution consisted of adjusting the sender interval when considering the

perceived reception drift in the receiver node. This is achieved by letting the sender node be

aware of the current drift perceived in the receiver node by having it periodically send an

update message to the sender node. We had the receiver node sample several incoming

packets at a time and calculate the slope value over a set of points by using the trendline

formula:

𝑦 = 𝑎𝑥 + 𝛽

Andreas Johansson Get In Sync With TSN

 18

Where the slope’s formula a is given by:

𝑎 =
𝑛 ∑(𝑥𝑦) − ∑ 𝑥 ∑ 𝑦

𝑛 ∑ 𝑥2 − (∑ 𝑥)2

Where n represents the number of points (packets), x represents the expected time of packet

arrival and y is the time the packet was recorded on the incoming interface.

For example, the following graph (Figure 6-9), consists of two slopes, a1 = 4 and a2 = -0.5,

the expected packet schedule is set to one second. With the slope formula we get:

𝑎 =
3 ∑(𝑥𝑦) − ∑ 𝑥 ∑ 𝑦

3 ∑ 𝑥2 − (∑ 𝑥)2
=

3 ∙ 23 − 6 ∙ 10

3 ∙ 14 − 36
=

9

6
= 1.5

Figure 6-9: Trendline over a set of points

In this implementation, the receiver node is calculating packet reception drift between the

TSN-switch and the receiver node. For example, if the packet reception drift between switch

and receiver is detected to be positive 500 milliseconds per second, then it updates the sender

node of a change in drift of positive 500 milliseconds per second. In future iterations the

measured drift may change due to variations in the clocks of the end stations or the TSN

network. For example, if the measured drift become positive 400 milliseconds per second, the

receiver node will update the sender node with a change in drift of negative 100 milliseconds

per second to adjust the transmission period to the new drift and this way prevent the

aforementioned problems. If the mechanism was implemented in the TSN switch instead, the

receiver might notice a slight drift in reception at the beginning which would disappear after

the first few iterations of the mechanism. This kind of solution is outside of the scope for this

thesis. The code for the dynamic solution can be found in Appendix C and Appendix D.

Trendline: y = 1.5x + 0.3333
0

1

2

3

4

5

6

0 1 2 3 4

A
ct

u
al

 p
ac

ke
t

ar
ri

va
l (

s)

Expected packet arrival (s)

Trendline example

a2 = -0.5

a1 = 4

Andreas Johansson Get In Sync With TSN

 19

7. Results

This section shows and describes the results from the different experiment scenarios.

7.1. Initial scenarios

The results from the initial scenarios encompass the investigating phase of our network’s

behavior in three different states. As described in section 6.2.1 these scenarios include the

following:

1. Unsynchronized endpoints without intermediary TSN switch

2. Synchronized endpoints without intermediary TSN switch

3. Synchronized endpoints with an intermediary TSN switch

7.1.1. Unsynchronized endpoints without TSN switch

In this scenario four graphs are presented, both sender graphs and both receiver graphs are the

same, but one is focused on showing jitter while the other is focused on the drift.

In Figure 7-1, we can see the jitter of the unsynchronized sender node and in Figure 7-2 the

slope value is represented as a trendline. The slope value is the average drift the receiver node

experience per second and packet since the packets are sent in one-second intervals. In these

graphs, the sender experiences a jitter of 43.5 milliseconds and a drift per second of 40

nanoseconds. However, since the packets are scheduled, sent, and sampled by the same

system clock the drift is zero.

Figure 7-1: Unsynchronized sender node without TSN (jitter).

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 200 400 600 800 1000

D
ev

ia
ti

o
n

 o
f

sc
h

ed
u

le
 (

s)

Scheduled sending time (s)

Unsynchronized sender node (jitter)

Andreas Johansson Get In Sync With TSN

 20

Figure 7-2: Unsynchronized sender node without TSN (trendline).

As in the previous figures, we can see the jitter of the unsynchronized receiver node in Figure

7-3 and the slope value in Figure 7-4. In these graphs, the receiver experiences a jitter of 43.6

milliseconds. The slope value, or drift, in the receiver node, is calculated to be 500

nanoseconds per second, which means that over the duration of the experiment the receiver

node has experienced a packet reception drift of 500 microseconds.

Figure 7-3: Unsynchronized receiver node without TSN (jitter).

Slope value = kx = 4 · 10-8 x

0

0.002

0.004

0.006

0.008

0.01

0 200 400 600 800 1000

Se
n

d
in

g
ti

m
e

(s
)

Packets sent

Unsynchronized sender node (trendline)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 200 400 600 800 1000D
ev

ia
ti

o
n

 o
f

sc
h

ed
u

le
d

 r
ec

ep
ti

o
n

 (
s)

Scheduled reception time (s)

Unsynchronized receiver node (jitter)

Andreas Johansson Get In Sync With TSN

 21

Figure 7-4: Unsynchronized receiver node without TSN (trendline).

7.1.2. Synchronized endpoints without TSN switch

In Figure 7-5 and Figure 7-6 we can see the jitter and drift of the receiver node. The graphs

for the sender node are not included since the sender node acts as the NTP-server it is not

affected by new experiments and will experience the same amount of jitter as well as zero

drift. For comparison, the jitter was still recorded in the sender during this experiment and

was measured to be 60 milliseconds, the jitter for the receiver node in Figure 7-5 was

measured to be 59.5 milliseconds. The drift in the receiver node after synchronization

between the endpoints was measured to be -60 nanoseconds per second.

Figure 7-5: Synchronized receiver node without TSN (jitter).

Slope value = kx = 5 · 10-7 x

0

0.002

0.004

0.006

0.008

0.01

0 200 400 600 800 1000

D
ev

ia
ti

o
n

 o
f

sc
h

ed
u

le
d

 r
ec

ep
ti

o
n

 (
s)

Scheduled reception time (s)

Unsynchronized receiver node (trendline)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000

D
ev

ia
ti

o
n

 o
f

sc
h

ed
u

le
d

 r
ec

ep
ti

o
n

 (
s)

Scheduled reception time (s)

Synchronized receiver node (jitter)

Andreas Johansson Get In Sync With TSN

 22

Figure 7-6: Synchronized receiver node without TSN (trendline)

7.1.3. Synchronized endpoints with intermediary TSN switch

In Figure 7-7 we can see that with the introduction of a TSN switch in the network the jitter is

heavily reduced, it is measured to be ~180 microseconds. However, the drift has increased

and is now calculated to be -8 microseconds per second. The experienced packet reception

drift in the receiver node over the duration of the experiment is -8 milliseconds.

Figure 7-7: Synchronized receiver node with intermediary TSN switch

Slope value = kx = -6 · 10-8 x
-0.005

-0.003

-0.001

0.001

0.003

0.005

0 200 400 600 800 1000

D
ev

ia
ti

o
n

 o
f

sc
h

ed
u

le
d

 r
ec

ep
ti

o
n

 (
s)

Scheduled reception time (s)

Synchronized receiver node (trendline)

Slope value = kx = -8 · 10-6 x
-0.01

-0.008

-0.006

-0.004

-0.002

0

0 200 400 600 800 1000

D
ev

ia
ti

o
n

 o
f

sc
h

ed
u

le
d

 r
ec

ep
ti

o
n

 (
s)

Scheduled reception time (s)

Receiver node with intermediary TSN switch

Andreas Johansson Get In Sync With TSN

 23

7.1.4. Summary

An overview of jitter and drift in the different experiments is shown in Table 7-1. Jitter in the

receiver node is directly correlated to the sender node’s jitter in the topologies without an

intermediary switch. In the last experiment, jitter in the receiver instead depended on the TSN

switch, which sends its packets in a fixed schedule. The jitter is lowest in the receiver when

TSN is introduced while having the highest reception drift. The reception drift was lowest in

the synchronized network without a TSN switch.

Node Jitter (ms) Drift/s (µs)

Sender unsynchronized 43.59 N/A

Receiver unsynchronized 43.62 0.50

Sender synchronized 60.05 N/A

Receiver synchronized 59.56 -0.06

Sender with TSN switch 89.93 N/A

Receiver with TSN switch 0.17 -8.00

Table 7-1: Jitter and drift in initial scenarios

7.2. Extreme scenarios

As described in section 6.2.2, the extreme scenarios aim to investigate the network behavior

when introducing a synthetic clock drift. The reason for applying a synthetic drift is to

investigate the long-term effects of clock drift but applied in a shorter period. In our case, we

either changed the cycle time in the TSN switch or the sender interval in the sender node. The

hypothesis is explained in further detail in section 6.2.2.

7.2.1. Synthetic negative clock drift

Figure 7-8 shows the results from the first extreme scenario where the hypothesis was that

packets would eventually miss their TSN window. In this graph, the cycle time in the TSN

switch was set to 990 milliseconds and the sender/receiver schedule was set to one second.

The receiver node experiences heavy clock drift in its packet reception schedule. The jumps

in the graph show that packets are missing their scheduled delivery times and are instead

received in their next window 990 milliseconds later. Since there are ten jumps it is implied

that packets have missed their scheduled window ten times.

Andreas Johansson Get In Sync With TSN

 24

Figure 7-8: Synthetic negative clock drift in the receiver

7.2.2. Synthetic positive clock drift

In Figure 7-9 the result from the other extreme scenario is shown. Note that the graph does

not display the heavy clock drift experienced in the sender node. A positive clock drift of 500

milliseconds per second exists, but the graph is represented in this way to clearly show that

packets were lost. The x-axis shows the expected packet number, and the y-axis shows the

deviation of the received packet number.

To force these errors, the TSN switch’s cycle time was set to one second and the sender’s

sending interval was set to 500 milliseconds. After about 450 packets were received, packets

started to disappear in irregular patterns which are illustrated in the graph which shows the

accumulated lost packets on its y-axis. Packets being lost are further illustrated in Figure 7-10

where packets received are compared to the respective payload they carried, meaning the

packet containing payload 454 was lost.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 200 400 600 800 1000

D
ev

ia
ti

o
n

 o
f

sc
h

ed
u

le
d

 r
ec

ep
ti

o
n

 (
s)

Scheduled reception time (s)

Synthetic negative drift in the receiver

Andreas Johansson Get In Sync With TSN

 25

Figure 7-9: Synthetic positive clock drift in the receiver

Figure 7-10: Packets lost in Wireshark

7.3. Solutions

This section covers the results from the implemented solutions. The solutions are derived

from the analysis of the previous experiments.

7.3.1. Static solution

In Figure 7-11 the sender interval is set to one second and the interval in the switch is changed

from 990 milliseconds to 995 milliseconds. The change is done to symbolize an improvement

by statically trying to match the clock drift measured in the receiver by changing the cycle

time in the TSN TAS schedule. In the graph, we can see that compared to Figure 7-8 where

ten jumps in the graph indicated ten packets missing their scheduled window, there are now

five jumps in this graph after changing the switch cycle time.

0

10

20

30

40

50

60

70

80

90

440 460 480 500 520 540

Lo
st

 p
ac

ke
ts

Expected packet number

Synthetic positive drift in the receiver

Andreas Johansson Get In Sync With TSN

 26

Figure 7-11: Static solution

Figure 7-12 shows the result from fully applying the precise static solution. After trying to

precisely measure and estimate the real clock drift in the receiver compared to the TSN

switch, the switch cycle was set to 1 000 007 962 nanoseconds, or 1.000007962 seconds. In

the graph, all packets are arriving in their scheduled window and with almost zero drift. The

slope value indicates that there is a drift of two nanoseconds per second which means that

over the duration of the experiment (10 000 seconds) the receiver drifted 20 microseconds.

This result means that it would take 500 million seconds (approximately 16 years) for the

receiver to drift one second.

Figure 7-12: Receiver node, static solution

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000D
ev

ia
ti

o
n

 o
f

sc
h

ed
u

le
d

 r
ec

ep
ti

o
n

 (
s)

Scheduled reception time (s)

Static solution

Slope value = kx = 2 · 10-9 x

-0.01

-0.005

0

0.005

0.01

0 2000 4000 6000 8000 10000

D
ev

ia
ti

o
n

 o
f

sc
h

ed
u

le
d

 r
ec

ep
ti

o
n

 (
s)

Scheduled reception time (s)

Further improved static solution: 10 000 packets

Andreas Johansson Get In Sync With TSN

 27

7.4. Dynamic solution to extreme scenarios

Figure 7-13 shows the result from the implementation of the dynamic solution on an

experiment where the switch cycle was set to 990 milliseconds and the scheduled interval in

the endpoints was set to one second. The experiment builds as a solution on the example of

synthetic negative clock drift shown in section 7.2.1. In this experiment, the dynamic script

was executed during runtime after approximately four minutes to show the effect of running

the script. The graph shows that the number of critical errors, i.e., where packets miss their

windows in the TSN switch are reduced from one per every 100 packets to zero over 70 000

packets.

Figure 7-13: Dynamic solution with average drift accounted for

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 10000 20000 30000 40000 50000 60000 70000

D
ev

ia
ti

o
n

 o
f

sc
h

ed
u

le
d

 r
ec

ep
ti

o
n

 (
s)

Scheduled reception time (s)

Dynamic Solution: 70 000 packets

Packets missing TSN windows at packet 30, 130 and 230.

Dynamic script started at packet 250.

Andreas Johansson Get In Sync With TSN

 28

8. Discussion

With this work we aimed to analyze the effects of introducing an unsynchronized TSN Switch

in a network with already synchronized endpoints, making it a partially synchronized TSN

network. Moreover, since TSN seems to require full synchronization to function properly, we

wanted to see if we could solve potential issues when the network is partially synchronized.

To investigate this, we decided to design small-scale experiments in a closed network

environment. We have been measuring the arrival time of packets on the input interfaces. Our

measuring tool, Wireshark, allows us to make precise measurements in the order of

nanoseconds. Since we also used a closed environment, we benefitted from having zero traffic

originating from outside the network, as well as keeping other network traffic to a minimum.

As scheduled traffic is isolated in its respective queue, we have no reason to believe that the

scheduled traffic used in the experiments would be affected by other traffic in the network.

For the experiments, we first laid a baseline of initial experiments to gather data on the

network performance without TSN, both unsynchronized and synchronized. When comparing

the results, we noticed that synchronization had no discernible impact on jitter in the network,

however, the drift was reduced from 500 nanoseconds per second to -60 nanoseconds per

second. The drift is almost zero in the receiver and can be considered a statistical error due to

the large amount of jitter in the packet reception. Depending on how well the sender node

performs during runtime, the trendline can become skewed one way or the other. However,

since we are seeing a substantial improvement in drift, we can assume that the endpoints are

properly synchronized.

After gathering data without TSN in the network we introduced the TSN switch and made

comparisons. The results showed that the introduction of TSN reduced jitter since the MTSN

Soc-E kit has more precise hardware, designed for real-time capabilities, and uses a hardware

clock as opposed to the Raspberry Pis. The Raspberry Pis are neither equipped with hardware

clocks nor real-time capabilities except for some light functionality to prioritize processes in

the Raspberry Pi OS. The Raspberry Pis not having hardware clocks is a limitation in the

experiments due to increased jitter and less precise data. Although, the lack of precise end

systems can also be considered plausible in real-world scenarios.

The results from the initial experiments partially answered our questions about what happens

when we introduce the TSN switch, which is that jitter was reduced at the cost of reception

drift being introduced. With this drift in mind, we wanted to see what long-term effects drift

in the network could cause. To achieve this, we constructed extreme cases of drift, both

positive and negative. The results showed that in the case of negative clock drift, packets

missed their TSN window since the TSN switch is keeping a schedule that is sending

scheduled traffic at a faster rate than the endpoints. In the other case, with a positive reception

drift, packets are completely lost because the TSN switch queue buffers become full, and the

switch must empty them. These effects can have dire consequences when occurring in a

production setting or a finished product like a car.

With this work, we have iteratively analyzed and designed experiments and made

implementations which we then have observed and evaluated. In the last iteration of

experiments, we tried to counteract the clock drift by either statically changing the cycle time

Andreas Johansson Get In Sync With TSN

 29

in the TSN switch or dynamically changing the sender interval according to the measured

clock drift. Our results indicate that we are managing the clock drift in both cases. In the first

case, with the static approach, it is easier to measure how well the solution works. As

described in section 7.3.1, it should take approximately 16 years before a packet drifts a

whole second off schedule. Since the drift is positive, the packet would result in being

queued. In the other example, with the dynamic solution, it is harder to estimate how well the

solution works since it is dynamically updating the sender node. We have at least proven it

worked over 70 000 packets (approximately 19 hours), which is a vast improvement over

having packets missing their window every 99 seconds. We expect this solution to function

permanently even if the system is subjected to environmental changes, such as temperature or

pressure changes that could modify the different clocks involved.

Out of the dynamic and static solution, no solution is better than the other, but rather it

depends on the application. In homogenous networks, where the drift is deterministic and

shared between all endpoints, both the static and dynamic solution are applicable. The static

solution could theoretically work forever if the drift is accurately measured and stable.

Although the solution is susceptible to changes in drift, for example when the system is

exposed to changes in temperature or pressure. However, server rooms can be considered

controlled environments where the static solution could work indefinitely.

If the network is homogenous and experiences a change in drift, then the dynamic solution

would still work since it can adapt several endpoints to the same drift. The dynamic solution

might instead experience issues in heterogeneous networks where the drift of one set of

endpoints changes differently to another set. If the dynamic solution registers these different

drifts, and changes the individual periods accordingly, eventually a collision may occur unless

the TSN switch also is rescheduled. However, rescheduling in TSN is a known

nondeterministic polynomial problem (NP). Rescheduling the switch becomes an increasingly

complex problem when the network grows, meaning that it is not feasible to reschedule the

switch dynamically. In the example in Figure 8-1 we are sending two different messages that

are scheduled within TSN. The periods are first the same but after measurements, they are

changing, period one is extended by 25%, and period two is shortened by 25%. After the

periods are updated, we can see how the messages collide. If the changes are to be done in the

switch it calls for re-scheduling of the TSN network which we already mentioned is not

feasible in real implementations.

Andreas Johansson Get In Sync With TSN

 30

Figure 8-1: Dynamic solution registers different types of drift

Regarding the last question in the problem formulation, according to our results, it is possible

to counteract the drift we found in our small heterogeneous network, and it is possible without

interfering with the switch. However, we see problems in the static solution if there are

dynamic changes in drift and problems with the dynamic solution in heterogeneous networks

if different sets of endpoints experience different drift.

Andreas Johansson Get In Sync With TSN

 31

9. Conclusions

With this work, we aimed to study the effects of keeping a heterogeneous TSN network

partially synchronized. This is motivated by cases where legacy systems are not able to be

fully integrated with a TSN network due to a lack of clock synchronization support. There are

also cases where cheap units like microcontrollers might support clock synchronization

between each other but lack compatible synchronization mechanisms with TSN. We wanted

to analyze jitter, as well as reception time drift in the end stations when they are used in a

TSN network. Moreover, we wanted to investigate if it is possible to counteract any negative

effects of keeping the network partially synchronized.

We have analyzed a simple network of two nodes sending time-triggered traffic from a sender

to a receiver. First, we started by laying a foundation to show the effects of having the two

nodes unsynchronized and synchronized, we could then progress to analyzing the effects of

adding a TSN switch in between these nodes. Our results show that jitter in the receiver node

is reduced by TSN, but at the cost of synchronization throughout the network since the switch

is not synchronized with the endpoints. These results answered our first research question:

“With regard to clock drift and jitter, what are the effects of only synchronizing endpoints

through their legacy synchronization mechanisms in a heterogeneous TSN network?” We

showed that there are negative effects of having a partially synchronized TSN network. We

also analyzed the long-term effects of letting the network experience positive and negative

drift between the TSN switch and the Raspberry Pi endpoints. These results showed that in

the case of negative reception drift in the receiver node, after drifting a whole period, packets

missed their TAS window. In the case of positive reception drift, packets were instead queued

until packet drops occurred from the buffer in the switch. We have not shown exactly when

the drop happens, since it is outside of the scope of this thesis, but we have shown that

negative effects exist.

Our subquestion was: “If the effects result in clock drift between devices, in what ways can we

manage this and is it possible without interfering with the TSN switch?”. To answer this

question and solve the issues we have designed two solutions. The first solution consists of

measuring packet reception drift as accurately as possible in the receiver node and applying

this change in the TSN switch. The second solution consists of continuously calculating the

drift in intervals by timestamping packets in the receiver node. After calculations, the receiver

node updates the sender node of the perceived reception drift which the sender node adjusts

to. Through our results, we have shown that our solutions have had positive effects on the

reception drift. In the dynamic solution, we showed that it was possible to reduce drift by

dynamically and automatically changing the sending period in the sender node. The period

used for the experiment drifted circa one millisecond per second and missed its TAS window

every 100th packet. When executing the dynamic solution, we showed that another packet did

not miss a TAS window for the duration of the experiment, which was running for over 70000

packets, or approximately 19 hours. In the static solution, we measured a real reception drift

Andreas Johansson Get In Sync With TSN

 32

of negative eight microseconds per second. Then we showed that we could statically change

the cycle time in the switch, and subsequently measure a clock drift of two nanoseconds per

second which is 4000 times smaller clock drift.

10. Future work

On one hand, this work lends itself to a plethora of different directions for continuing the

work. The work could be improved by writing code to accurately measure the drift of the

dynamic solution, which has not been done yet. It is currently only possible to measure the

duration the dynamic solution runs an experiment without experiencing critical errors, such as

packets getting queued or missing TAS windows. On the other hand, it would be interesting

to investigate the effects in heterogeneous networks when introducing different sets of

endpoints with different synchronization. It is also possible to build on the dynamic solution

and show whether the hypothesis in the discussion section and Figure 8-1 is correct when

packets collide.

Currently, in the dynamic solution, the periods are changed in the sender node. We would like

to propose a solution where periods instead are changed in the switch, since legacy devices

may be less flexible than TSN switches. Another consideration would be to research the

possibility of dynamically rescheduling the TSN switch. Since rescheduling is an NP-problem

it would be interesting to investigate faster scheduling methods to reduce scheduling time by

using heuristic algorithms7 and how to propagate these changes throughout the TSN network.

-

7 A heuristic algorithm aims to simplify problems to solve them faster and more efficient, on the cost

of accuracy and optimality [26].

Andreas Johansson Get In Sync With TSN

 33

Appendix A. Switch configuration

The TSN switch was configured according to the following steps:

(1) Connection to the switch is done via Ethernet, in this case, we connected switch port 0

to a PC.

(2) By default, the switch is accessible on IP address 192.168.4.64 which can be reached

via a web browser. Note that it is necessary for the device connecting to the switch to

be in the same subnet as the switch.

(3) To access the TAS scheduling, go to Advanced Network, see Figure A-1.

(4) In Advanced Network the gate was enabled for port 2, see Figure A-2. This port is

used by the device which is receiving traffic. The other ports were left unconfigured.

(5) TAS was subsequently configured according to Figure A-3. In the figure, it can be

observed that the cycle time was set to one second since the experiment is using

periodic traffic in one-second intervals. The list length is set to two. The interval for

Q7 which is the queue for the experiment traffic of high priority is set to 7400 ns. The

reason for this is explained in section 6.2.3.1 Adjusting cycle time in the switch. Other

traffic traversing the network is allowed to be sent in Q0 outside the 7400 ns interval.

Figure A-1: Switch menu

Figure A-2: Switch port configuration

Andreas Johansson Get In Sync With TSN

 34

Figure A-3: TAS configuration.

Andreas Johansson Get In Sync With TSN

 35

Appendix B. Simple sender node code

Table B-1 presents the code excerpt for a python 3 file named traffic.py. This code was used in the

implementations where only an Internet Control Message Protocol (ICMP) packet was sent in a

periodic interval without any payload or communication back from the receiver node.

The code was created by Nguyen and Nasiri [9] with slight modifications to adapt to the devices used

in this thesis. To run the code on Raspberry Pi OS or other Debian-based operating systems (OS) it is

necessary to install the package Scapy which is done with the command sudo pip3 install

scapy. The code is modifying the Virtual LAN (VLAN) tag to make the packets high priority. The

code is run with the command python3 traffic.py.

1. # authors: Andreas Johansson <ajn19017@sudent.mdu.se>
2. # Built upon the program by:
3. # Thien Phong David Nguyen <tnn18006@student.mdu.se>
4. # and
5. # Zack Nasiri <zni18001@student.mdu.se>
6. # course.: DVA333 Thesis for the Degree of Bachelor of Science in Computer Network Engineering
7. # date...: 17 Mar 2022
8. #
9. ##### Importing neccessary modules #####
10. import time, sys, os
11. from scapy.all import *
12. from scapy.utils import *
13.
14. #This program modifies an ICMP packets ethernet header with Scapy and sends it periodically to

a receiver. The period is 1 second.
15. #To use the program: Change IP:s and MAC-addresses as well as interface (iface) to the

corresponding devices IP/MAC/interface
16. #If the file is renamed the traffic.py needs to be changed as well.
17.
18. ##### Set the priority of the script to real-time and to the highest priority #####
19. sudoPrio = os.popen("ps -aux | grep traffic.py | awk '{print $2}' | head -1").read()
20. prosPrio = os.popen("ps -aux | grep traffic.py | awk '{print $2}' | awk 'NR==2'").read()
21.
22. os.system("sudo chrt -p 99 " + str(sudoPrio))
23. os.system("sudo chrt -p 99 " + str(prosPrio))
24. os.system("sudo renice -20 -p " + str(sudoPrio))
25. os.system("sudo renice -20 -p " + str(prosPrio))
26.
27. ###### Code to manipulate the Ethernet header #####
28. frame = (Ether(dst='2c:44:fd:10:32:a1',src='b8:27:eb:95:42:a2')
29. / Dot1Q(vlan=1)
30. / Dot1Q(prio=7)
31. / IP(dst='192.168.4.100',src='192.168.4.200')
32. / ICMP())
33.
34. #Main thread, periodic sending of traffic of 1 second
35. q = time.time()
36. p = time.time()
37. i=0
38. try:
39. while True:
40. while p < q-k:
41. p = time.time()
42. sendp(frame, iface='eth0')
43. q+=x
44. i+=1

Table B-1: Code for periodic traffic

Andreas Johansson Get In Sync With TSN

 36

Appendix C. Sender node code, dynamic solution

This code (Table C-1) is the first part of a two-way communication solution where the receiver node

updates the sender node with a perceived clock drift value. The receiver part of the code can be found

in Appendix D. To run the code, see the necessary information in Appendix B.

1. import time, sys, os, socket, threading
2. from scapy.all import *
3. from scapy.utils import *
4.
5. #Set up a simple TCP server
6. server_address = ('192.168.4.200', 1338)
7. sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
8. sock.bind(server_address)
9. sock.listen(1)
10.
11. #Traffic period in seconds = x and slope value = k. As in y=kx+m
12. x=1000000000
13. k=0
14.
15. #Function to run TCP server in separate thread
16. def data_receiver():
17. global k, x
18. connected = False
19. while True:
20. if connected == False:
21. connection, client_address = sock.accept()
22. print("Client has connected")
23. connected = True
24. else:
25. data = connection.recv(1024)
26. # k=int(data.decode())
27. # x+=k
28. print("New drift received: " + str(k))
29. print("New schedule:" + str(x) + "nanoseconds")
30.
31.
32. ##### Set the priority of the script to real-time and to the highest priority #####
33. sudoPrio = os.popen("ps -aux | grep traffic_with_TCP.py | awk '{print $2}' | head -1").read()
34. prosPrio = os.popen("ps -aux | grep traffic_with_TCP.py | awk '{print $2}' | awk

'NR==2'").read()
35.
36. os.system("sudo chrt -p 99 " + str(sudoPrio))
37. os.system("sudo chrt -p 99 " + str(prosPrio))
38. os.system("sudo renice -20 -p " + str(sudoPrio))
39. os.system("sudo renice -20 -p " + str(prosPrio))
40.
41. #Start data receiver thread
42. thread_0 = threading.Thread(target = data_receiver)
43. thread_0.start()
44.
45. #Forge ethernet frame used for periodic sending
46. frame = (Ether(dst='2c:44:fd:10:32:a1',src='b8:27:eb:95:42:a2')
47. / Dot1Q(vlan=1)
48. / Dot1Q(prio=7)
49. / IP(dst='192.168.4.100',src='192.168.4.200')
50. / ICMP())
51.
52. #Main thread, periodic sending of traffic in x seconds adjusted with slope value from receiver
53. q = time.time_ns()
54. p = time.time_ns()
55. i=0
56. try:
57. while True:
58. # print("p " + str(p) + " q-k " + str(q+k)) #Used to validate that period is

updating when receiving new slope (k) value from receiver node

Andreas Johansson Get In Sync With TSN

 37

59. while p < q-k:
60. p = time.time_ns()
61. sendp(frame, iface='eth0')
62. q+=x
63. i+=1
64. print("Sending packet #%d ST: %s" %(i,str(p)))
65.
66. except KeyboardInterrupt:
67. print('\033[2DBye.')
68. thread_0.join()

Table C-1: Sender node code, dynamic solution

Andreas Johansson Get In Sync With TSN

 38

Appendix D. Receiver node code, dynamic solution

This code (Table D-1) is the second part of a two-way communication solution where the receiver

node updates the sender node with a perceived clock drift value. The sender part of the code can be

found in Appendix C. To run the code, see the necessary information in Appendix B.

1. from scapy.all import *
2. import time, sys, os, socket
3.
4. pkt_count=21
5. current_slope=0
6. old_slope=0
7.
8. server_address=('192.168.4.200',1338)
9.
10. ##### Set the priority of the script to real-time and to the highest priority #####
11. sudoPrio = os.popen("ps -aux | grep receiver_new_formula.py | awk '{print $2}' | head -

1").read()
12. prosPrio = os.popen("ps -aux | grep receiver_new_formula.py | awk '{print $2}' | awk

'NR==2'").read()
13.
14. os.system("sudo chrt -p 99 " + str(sudoPrio))
15. os.system("sudo chrt -p 99 " + str(prosPrio))
16. os.system("sudo renice -20 -p " + str(sudoPrio))
17. os.system("sudo renice -20 -p " + str(prosPrio))
18.
19. try:
20. client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
21. except socket.error:
22. print("Socket failed. Exiting..")
23. sys.exit()
24.
25. print("Socket Created, connecting to " + str(server_address[0]) + " port " +

str(server_address[1]))
26. try:
27. client.connect(server_address)
28. except ConnectionRefusedError:
29. print("Could not connect to server. Exiting..")
30. sys.exit()
31. print("Connection established.")
32.
33. ## Setup sniff, filtering for IP traffic
34.
35. while True:
36. pkt = sniff(iface="eth0",filter='vlan 1',count=pkt_count)
37. file=wrpcap('file.pcap',pkt,nano=True)
38. nanopacket = rdpcap('file.pcap')
39.
40. n = pkt_count-1
41. sum_x=0
42. sum_y=0
43. sum_xy=0
44. sum_squared_x=0
45. delta = [None] * pkt_count #Declare an array
46.
47. for i in range(0, n, 1): #Save all y-values to the array
48. delta_y[i] = int((nanopacket[i+1].time-nanopacket[0].time-(i+1))*1000000000)
49.
50. for i in range(1, n+1, 1): #Sum x and x^2
51. sum_x+=i
52. sum_squared_x+=i*i
53.
54. for i in range(0, n, 1): #Sum y and xy
55. sum_y+=delta_y[i]
56. sum_xy+=((i+1)*delta_y[i])
57.

Andreas Johansson Get In Sync With TSN

 39

58. slope = int((n*sum_xy - sum_x*sum_y) / (n*sum_squared_x - sum_x*sum_x)) #This is the
trendline formula for the slope only

59. current_slope = slope-old_slope
60. print("Slope of last 20 packets: ", str(slope))
61. print("Slope update to sender node: " + str(current_slope) + " nanoseconds per second")
62.
63. if current_slope == 0:
64. print("Drift is stable")
65. else:
66. print("Sending update to sender node")
67. client.sendall(str(current_slope).encode())
68. old_slope+=current_slope
69. file = open('slopes.txt', 'a')
70. file.write(str(slope)+"\n")
71. file.close()
72.

Table D-1: Receiver node code, dynamic solution

Andreas Johansson Get In Sync With TSN

 40

Appendix E. Sender node code with payload

This code (Table E-1) sends periodic User Datagram Protocol (UDP) packets with a payload of

“packet x” where x represents which packet is currently being sent. This is done to identify any packet

losses in the receiver node. To run the code, see the necessary information in Appendix B.

1. import time, sys, os, socket, threading
2. from scapy.all import *
3. from scapy.utils import *
4.
5. #Set up a simple TCP server
6. server_address = ('192.168.4.200', 1338)
7. sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
8. sock.bind(server_address)
9. sock.listen(1)
10.
11. #Traffic period in seconds = x and slope value = k. As in y=kx+m
12. x=500000000
13. k=0
14.
15. #Function to run TCP server in separate thread
16.
17. ##### Set the priority of the script to real-time and to the highest priority #####
18. sudoPrio = os.popen("ps -aux | grep traffic_with_payload.py | awk '{print $2}' | head -

1").read()
19. prosPrio = os.popen("ps -aux | grep traffic_with_payload.py | awk '{print $2}' | awk

'NR==2'").read()
20.
21. os.system("sudo chrt -p 99 " + str(sudoPrio))
22. os.system("sudo chrt -p 99 " + str(prosPrio))
23. os.system("sudo renice -20 -p " + str(sudoPrio))
24. os.system("sudo renice -20 -p " + str(prosPrio))
25.
26.
27. #Forge ethernet frame used for periodic sending
28. def forge_frame(i):
29. global frame
30. frame = (Ether(dst='2c:44:fd:10:32:a1',src='b8:27:eb:95:42:a2')
31. / Dot1Q(vlan=1)
32. / Dot1Q(prio=7)
33. / IP(dst='192.168.4.100',src='192.168.4.200')
34. / UDP(sport=9999, dport=9999)
35. / Raw(load="packet " + str(i)))
36. #Main thread, periodic sending of traffic in x seconds adjusted with slope value from receiver
37. q = time.time_ns()
38. p = time.time_ns()
39. i=1
40. try:
41. while True:
42. forge_frame(i)
43. # print("p " + str(p) + " q-k " + str(q+k)) #Used to validate that period is

updating when receiving new slope (k) value from receiver node
44. while p < q-k:
45. p = time.time_ns()
46. sendp(frame, iface='eth0')
47. q+=x
48. i+=1
49. print("Sending packet #%d ST: %s" %(i,str(p)))
50.
51. except KeyboardInterrupt:
52. print('\033[2DBye.')
53. thread_0.join()

Table E-1: Sender node code with payload

Andreas Johansson Get In Sync With TSN

 41

References

[1] S. Floyd and M. Allman, "Comments on the Usefulness of Simple Best-Effort Traffic," ICSI.,

Berkeley, CA, USA, Tech. Memo. RFC 5290, Jul. 2008.

[2] J. Wang, Real-Time Embedded Systems (Quantitative Software Engineering Series), New York:

John Wiley & Sons Inc , 2017.

[3] F. M. Pozo Pérez, "Methods for Efficient and Adaptive Scheduling of Next-Generation Time-

Triggered Networks," PhD dissertation, Mälardalen University, Västerås, Sweden, 2019.

[4] D. Bujosa, I. Álvarez and J. Proenza, "CSRP: An Enhanced Protocol for Consistent Reservation

of Resources in AVB/TSN," IEEE Transactions on Industrial Informatics, vol. 17, pp. 3640-

3650, 2021.

[5] H. Lee, J. Lee, C. Park and S. Park, "Time-aware preemption to enhance the performance of

Audio/Video Bridging (AVB) in IEEE 802.1 TSN," in 2016 First IEEE International Conference

on Computer Communication and the Internet (ICCCI), 2016.

[6] D. B. Mateu, D. Hallmans, M. Ashjaei, A. V. Papadopoulos, J. Proenza and T. Nolte, "Clock

Synchronization in Integrated TSN-EtherCAT Networks," in 2020 25th IEEE International

Conference on Emerging Technologies and Factory Automation (ETFA), 2020.

[7] M. Barzegaran, N. Reusch, L. Zhao, S. Craciunas and P. Pop, Real-Time Guarantees for Critical

Traffic in IEEE 802.1Qbv TSN Networks with Unscheduled and Unsynchronized End-Systems,

2021.

[8] M. Ashjaei, private communication, Dec 2021.

[9] D. Nguyen and Z. Nasiri, "Performance analysis of a non-synchronized heterogeneous TSN

network," BSc thesis, Mälardalen University, Västerås, Sweden, 2022.

[10] C. E. Spurgeon, Ethernet: The Definitive Guide, Sebastopol, CA, USA: O'Reilly Media, 2000.

[11] IEEE 802.3 NGOATH Study Group, "IEEE P802.3bs,", IEEE802.

https://www.ieee802.org/3/bs/NGOATH_3bs_Objectives_16_0122.pdf (accessed Jan. 28, 2022).

[12] Cisco Networking Academy, Routing and Switching Essentials v6 Companion Guide,

Indianapolis, IND, USA: Cisco Press, 2017.

[13] Z. Wang, Y.-q. Song, J.-m. Chen and Y.-x. Sun, "Real time characteristics of Ethernet and its

Andreas Johansson Get In Sync With TSN

 42

improvement," in Proceedings of the 4th World Congress on Intelligent Control and Automation

(Cat. No.02EX527), 2002.

[14] P. Meyer, T. Steinbach, F. Korf and T. C. Schmidt, "Extending IEEE 802.1 AVB with time-

triggered scheduling: A simulation study of the coexistence of synchronous and asynchronous

traffic," in 2013 IEEE Vehicular Networking Conference, 2013.

[15] L. Zhao, P. Pop, Z. Zheng and Q. Li, "Timing Analysis of AVB Traffic in TSN Networks Using

Network Calculus," in 2018 IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2018.

[16] S. Thangamuthu, N. Concer, P. J. L. Cuijpers and J. J. Lukkien, "Analysis of Ethernet-switch

traffic shapers for in-vehicle networking applications," in 2015 Design, Automation Test in

Europe Conference Exhibition (DATE), 2015.

[17] C. Le and D. Qiao, "Evaluation of Real-Time Ethernet with Time Synchronization and Time-

Aware Shaper Using OMNeT++," in 2019 IEEE 2nd International Conference on Electronics

Technology (ICET), 2019.

[18] "IEEE Standard for Local and Metropolitan Area Networks–Timing and Synchronization for

Time-Sensitive Applications," IEEE Std 802.1AS-2020 (Revision of IEEE Std 802.1AS-2011), pp.

1-421, 2020.

[19] H.-T. Lim, D. Herrscher, M. J. Waltl and F. Chaari, "Performance Analysis of the IEEE 802.1

Ethernet Audio/Video Bridging Standard," in Proceedings of the 5th International ICST

Conference on Simulation Tools and Techniques, Brussels, 2012.

[20] L. Zhao, P. Pop and S. Steinhorst, Quantitative Performance Comparison of Various Traffic

Shapers in Time-Sensitive Networking, Mar 2021, arXiv:2103.13424.

[21] S. Chouksey, H. S. Satheesh and J. Åkerberg, "An Experimental Study of TSN-NonTSN

Coexistence," in 2021 IEEE 11th Annual Computing and Communication Workshop and

Conference (CCWC), 2021.

[22] M. Kim, J. Min, D. Hyeon and J. Paek, "TAS Scheduling for Real-Time Forwarding of

Emergency Event Traffic in TSN," in 2020 International Conference on Information and

Communication Technology Convergence (ICTC), 2020.

[23] K. Säfsten and M. Gustavsson, Forskningsmetodik för ingenjörer och andra problemlösare, 1:2

ed., Lund, Sweden, Studentlitteratur AB, 2019.

[24] J. F. Nunamaker, M. Chen and T. D. Purdin, "Systems development in information," Journal of

management information systems, vol. 7, no. 3, pp. 97-101, 1990.

Andreas Johansson Get In Sync With TSN

 43

[25] N. Agarwal, "Computer Network | Quality of Service and Multimedia," GeeksforGeeks.

https://www.geeksforgeeks.org/computer-network-quality-of-service-and-multimedia/ (accessed

Feb. 1, 2022).

[26] K. Vincent, N. Matthew and S. Spencer, "Heuristic algorithms,". Optimization.

https://optimization.mccormick.northwestern.edu/index.php/Heuristic_algorithms (accessed May.

6, 2022).

