Main Memory: Address Translation

CS 4410 Operating Systems

Address Translation

- Paged Translation
- Efficient Address Translation
 - Multi-Level Page Tables
 - Inverted Page Tables
 - TLBs

Downsides to Paging

Memory Consumption:

- Internal Fragmentation
 - Make pages smaller? But then...
- Page Table Space: consider 32-bit address space,
 4KB page size, each PTE 8 bytes
 - How big is this page table?
 - How many pages in memory does it need?

Performance: every data/instruction access requires *two* memory accesses:

- One for the page table
- One for the data/instruction

Internal Fragmentation Example

Multi-Level Page Tables to the Rescue!

Physical Memory

Two-Level Paging Example

32-bit machine, 1KB page size

- Logical address is divided into:
 - a page offset of 10 bits $(1024 = 2^{10})$
 - a page number of 22 bits (32-10)
- Since the page table is paged, the page number is further divided into:
 - a 12-bit first index
 - a 10-bit second index
- Thus, a logical address is as follows:

page number		page offset
index 1	index 2	offset
12	10	10

This one goes to three!

Physical Memory

Complete Page Table Entry (PTE)

Valid	Protection R/W/X	Ref	Dirty	Index
		l		

Index is an index into:

- table of memory frames (if bottom level)
- table of page table frames (if multilevel page table)
- backing store (if page was swapped out)

Synonyms:

- Valid bit == Present bit
- Dirty bit == Modified bit
- Referenced bit == Accessed bit

Address Translation

- Paged Translation
- Efficient Address Translation
 - Multi-Level Page Tables
 - Inverted Page Tables
 - TLBs

Inverted Page Table: Motivation

... comparatively few physical frames

Traditional Page Tables:

- map pages to frames
- are numerous and sparse

Why not map frames to pages? (How?)

Inverted Page Table: Implementation

Inverted Page Table: Discussion

Tradeoffs:

- ↓ memory to store page tables
- ↑ time to search page tables

Solution: hashing

- hash(page,pid) → PT entry (or chain of entries)
- What about:
 - collisions...
 - sharing...

Address Translation

- Paged Translation
- Efficient Address Translation
 - Multi-Level Page Tables
 - Inverted Page Tables
 - TLBs

Page Table Memory Lookups

How many memory accesses per data/instruction access?

- One per level of the page table
- One for the data/instruction

Workarounds

- CPU cache: Recently accessed data is still there, at virtual address
- Does this help for instructions?

Translation Lookaside Buffer (TLB)

Cache of virtual to physical page translations Physical Memory

Major efficiency improvement

Address Translation with TLB

Access TLB before you access memory.

Address Translation with TLB

Access TLB before you access memory.

Address Translation Uses!

Process isolation

 Keep a process from touching anyone else's memory, or the kernel's

Efficient inter-process communication

Shared regions of memory between processes

Shared code segments

common libraries used by many different programs

Program initialization

Start running a program before it is entirely in memory

Dynamic memory allocation

Allocate and initialize stack/heap pages on demand

MORE Address Translation Uses!

Program debugging

Data breakpoints when address is accessed

Memory mapped files

_ Next lecture Access file data using load/store instructions

Demand-paged virtual memory

• Illusion of near-infinite memory, backed by disk or memory on other machines

Checkpointing/restart

 Transparently save a copy of a process, without stopping the program while the save happens

Distributed shared memory

Illusion of memory that is shared between machines