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• Paged Translation
• Efficient Address Translation
• Multi-Level Page Tables
• Inverted Page Tables
• TLBs

Address Translation
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Memory Consumption:

• Internal Fragmentation
• Make pages smaller? But then…

• Page Table Space: consider 32-bit address space, 
4KB page size, each PTE 8 bytes
• How big is this page table?

• How many pages in memory does it need?

Performance: every data/instruction access 
requires two memory accesses:

• One for the page table

• One for the data/instruction

Downsides to Paging
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Internal Fragmentation Example
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+ Allocate only PTEs in use
+ Can use smaller pages
+ Simple memory allocation
− more lookups per memory reference

Multi-Level Page Tables to the Rescue!

index 1    |    index 2   |   offset

Frame | Access

Frame



32-bit machine, 1KB page size

• Logical address is divided into:
– a page offset of 10 bits (1024 = 2^10)

– a page number of 22 bits (32-10)

• Since the page table is paged, the page number is 
further divided into:
– a 12-bit first index

– a 10-bit second index

• Thus, a logical address is as follows:

Two-Level Paging Example

page number page offset

12 10 10
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index 1 index 2 offset
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+ First Level requires less contiguous memory
− even more lookups per memory reference

This one goes to three!



Index is an index into:
• table of memory frames (if bottom level)

• table of page table frames (if multilevel page table)

• backing store (if page was swapped out)

Synonyms:
• Valid bit == Present bit

• Dirty bit == Modified bit

• Referenced bit == Accessed bit

Complete Page Table Entry (PTE)
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• Paged Translation
• Efficient Address Translation
• Multi-Level Page Tables
• Inverted Page Tables
• TLBs

Address Translation
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So many virtual pages…

… comparatively few physical frames

Traditional Page Tables:
• map pages to frames
• are numerous and sparse

Inverted Page Table: Motivation
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Inverted Page Table: Implementation

Page-table Physical 
Memory
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Not to scale! Page table << Memory

Implementation:

• 1 Page Table for entire system

• 1 entry per frame in memory

• Why don’t we store the frame #?

page # offset
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Tradeoffs:

↓ memory to store page tables

↑ time to search page tables 

Solution: hashing

• hash(page,pid) → PT entry (or chain of entries)

• What about:
• collisions…

• sharing…

Inverted Page Table: Discussion
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• Paged Translation
• Efficient Address Translation
• Multi-Level Page Tables
• Inverted Page Tables
• TLBs

Address Translation
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How many memory accesses per 
data/instruction access?

• One per level of the page table

• One for the data/instruction

Workarounds

• CPU cache: Recently accessed data is 
still there, at virtual address

• Does this help for instructions?

Page Table Memory Lookups
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Cache of virtual to physical page translations
Major efficiency improvement

15

Translation Lookaside Buffer (TLB)



Access TLB before you access memory.

Address Translation with TLB
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What happens 
on a TLB miss?

What happens 
on context 
switch?

When memory 
is freed?



Access TLB before you access memory.

Address Translation with TLB
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Trick: access TLB 
while you access the cache.

What if data is in 
the CPU cache?



Process isolation
• Keep a process from touching anyone else’s memory, or 

the kernel’s

Efficient inter-process communication
• Shared regions of memory between processes

Shared code segments
• common libraries used by many different programs

Program initialization
• Start running a program before it is entirely in memory

Dynamic memory allocation
• Allocate and initialize stack/heap pages on demand

Address Translation Uses!
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Program debugging
• Data breakpoints when address is accessed

Memory mapped files
• Access file data using load/store instructions

Demand-paged virtual memory
• Illusion of near-infinite memory, backed by disk or 

memory on other machines

Checkpointing/restart
• Transparently save a copy of a process, without stopping 

the program while the save happens

Distributed shared memory
• Illusion of memory that is shared between machines

MORE Address Translation Uses!
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