Main Memory:
Address Translation

CS 4410
Operating Systems

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Address Translation

* Paged Translation
 Efficient Address Translation
* Multi-Level Page Tables

* Inverted Page Tables
* TLBs

Cornell CIS

Downsides to Paging

Memory Consumption:
* Internal Fragmentation
* Make pages smaller? But then...

* Page Table Space: consider 32-bit address space,
4KB page size, each PTE 8 bytes

* How bigis this page table?

 How many pages in memory does it need?
Performance: every data/instruction access
requires two memory accesses:
* One for the page table
* One forthe data/instruction

Internal Fragmentation Example

Virtual Physical Virtual Physical
Memor

Memor Memor

Memor

STACKO STACKO

Mostly
empty

STACK1 STACK1

Multi-Level Page Tables to the Rescue!

Physical
Memory
Processor
Virtual
| Address
1
'---)I index1 | index2 | offset I““““"“"""‘-
; ; Physical |
]
]
Level 1 Address i

E _____________ i__ Frame Offset [|----
E gi Level 2
\ Frame g
+ Allocate only PTEs in use

Frame | Access

+ Can use smaller pages
+ Simple memory allocation
—more lookups per memory reference

Two-Level Paging Example

32-bit machine, 1KB page size
* Logical address is divided into:

— a page offset of 10 bits (1024 =2/10)
— apage number of 22 bits (32-10)

* Since the page table is paged, the page numberis

further divided into:
— al2-bitfirstindex
— a 10-bit second index

* Thus, a logical address is as follows:

page number

page offset

| index 1 | index 2

offset |

12

10

10

This one goes to three!

Physical
Memory

Processor
Virtual ‘

Address
Index 2 | Index 3 Offset |-====—mmmmmmmm——m

I
v
=3
o
@
=
—h

1
' Physical i
1

H Address |
i

1

1

Level 1

Frame Offset [==-=

o ———————— -

+ First Level requires less contiguous memory
— even more lookups per memory reference

Complete Page Table Entry (PTE)

Valid Protection®R/W/X Ref Dirty Index

Index is an index into:
 table of memory frames (if bottom level)
 table of page table frames (if multilevel page table)
* backing store (if page was swapped out)

Synonyms:
* Valid bit == Present bit
 Dirty bit == Modified bit
» Referenced bit == Accessed bit

Address Translation

* Paged Translation

* Efficient Address Translation
* Multi-Level Page Tables
* Inverted Page Tables
* TLBs

Cornell CIS

Inverted Page Table: Motivation

So many virtual pages... virtual

P1 virtual / address
space

address space

P2

: 7 -
virtual physical
address P3virtual address space
Space gddress space P5 virtual
address space
... comparatively few physical frames
Traditional Page Tables: Why not map frames to pages?

* map pages to frames (How?)
* are numerous and sparse .

Inverted Page Table: Implementation

Virtual address
pid | page# | offset |

id| page .
PIE| Pes Page-table Physical
Memory
age pid
h
Sf:(;tch'\ng offset
Implementation: pad® Wy frame ¢

» 1 Page Table for entire system
* 1entry per frame in memory
* Why don’t we store the frame #?

Not to scale! Page table << Memory .

Inverted Page Table: Discussion

Tradeoffs:
¥ memory to store page tables
2 time to search page tables

Solution: hashing

* hash(page,pid) = PT entry (or chain of entries)
* What about:

e collisions...
* sharing...

12

Address Translation

* Paged Translation

* Efficient Address Translation
* Multi-Level Page Tables
* Inverted Page Tables
* TLBs

Cornell CIS

Page Table Memory Lookups

How many memory accesses per
data/instruction access?
* One per level of the page table
* One for the data/instruction
Workarounds
* CPU cache: Recently accessed data is
still there, at virtual address Ny
* Does this help for instructions?

Cornell

Translation Lookaside Buffer (TLB)

Cache of virtual to physical page translations

Physical
® o [] o
Major efficiency improvement Memory
Virtual
Address
Page# I Offset I

.

1 R e -

i

b 1 Translation Lookaside Buffer (TLB) '
1
H Virtual Page
i Page Frame Access Physical i
1
i—*@-- ----- Address i
1
: _—
i
i
RO
i
i
i
= Page Table
I)@-)Lookup

Address Translation with TLB

Access TLB before you access memory.

Virtual

Processor

Address

What happens
on a TLB miss?

What happens
on context '
switch?

De;ta
When memory 1}
is freed? '

Virtual
Address

Physical
Address

Physical
Memory

Raise
Exception

16

Address Translation with TLB

Access TLB before you access memory.

Virtual Virtual
Address Address _
. . Raise
Processor f------- mo---- > TLB Miss --------- > Page Invalid ------- > .
' Exception
Table
1 . Hit
. oo : : Valid
What if data is in: 5 : ;
5 : Frame Frame
the CPU cache? | 5 ; :
S o Y S | Py
Physical Memory
' Address
Data :
! Trick: access TLB :

. Data
while you access the cache. -

Address Translation Uses!

Process isolation
* Keep a process from touching anyone else’s memory, or
the kernel’s

Efficient inter-process communication
» Shared regions of memory between processes

Shared code segments
* common libraries used by many different programs

Program initialization
» Startrunning a program before it is entirely in memory

Dynamic memory allocation
* Allocate and initialize stack/heap pages on demand

18

MORE Address Translation Uses!

Program debugging
* Data breakpoints when address is accessed

Memory mapped files
* Access file data using load/store instructions

Demand-paged virtual memory
* |llusion of near-infinite memory, backed by disk or
memory on other machines

Checkpointing/restart
* Transparently save a copy of a process, without stopping
the program while the save happens

Distributed shared memory
* |llusion of memory that is shared between machines

2
*&\ec’w
>

19

