
Distribution Planning to Optimize Profits in the Motion 
Picture Industry 

 
Barbara Somlo1 

Business Analyis and Information, Amgen 
One Amgen Center Drive M/S 27-3-C, 

Thousand Oaks, CA 91320 
 

Kumar Rajaram2 
Reza Ahmadi3 

UCLA Anderson School of Management 
110 Westwood Plaza, Box 951481 

Los Angeles, CA 90095-1481 
 

Submitted: April 2009 
First Revision: January 2010 

Accepted: March 2010 
 

Abstract 

We consider the distribution planning problem in the motion picture industry. This problem involves 

forecasting theater-level box office revenues for a given movie and using these forecasts to choose the 

best locations to screen a movie. We first develop a method that predicts theater-level box office revenues 

over time for a given movie as a function of movie attributes and theater characteristics. These estimates 

are then used by the distributor to choose where to screen the movie. The distributor’s location selection 

problem is modeled as an integer programming based optimization model that chooses the location of 

theaters in order to optimize profits. We tested our methods on realistic box office data and show that it 

has the potential to significantly improve the distributor’s profits. We also develop some insights into 

why our methods outperform existing practice, which are crucial to their successful practical 

implementation. 
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1. INTRODUCTION 

The motion picture industry is an important sector of the U.S. economy. Movie releases at 

theaters generated approximately $9 billion in revenue in 2005, representing a nearly 20% 

increase since the beginning of the decade. In spite of this increase, the Motion Picture 

Association of America (MPAA) reports that only 9 of the 549 movies released in 2005 

generated profit higher than $50 million (http://www.mpaa.org). The average cost of a studio-

released movie was nearly $96 million in 2005, up from $54.1 million in 1995. The major 

component of this cost was the development and production budget, which averaged around $60 

million in 2005, followed by marketing ($36 million), and distribution costs. Depending on the 

distribution strategy chosen by the movie distributor (e.g., platforming, wide, or saturation 

release), distribution costs can be up to $9 million and averaged around $3.83 million per movie 

in 2005. While distribution represents a smaller portion of a movie’s total investment in 

comparison to development, production, and marketing costs, effective distribution is critical to 

box office success and ultimate financial return from a movie (Reardon, 1992; Thomas, 1998).  

Distribution of a motion picture is handled by its distributor, who forms an important link in 

the motion picture industry supply chain (Figure 1). Examples of major distributors in the motion 

picture industry include Buena Vista (Walt Disney’s distribution arm), Columbia (Sony’s 

distribution arm), Universal, Paramount, Fox and Warner Brothers. The motion picture 

distribution industry is highly concentrated with these six distributors accounting for 70% of box 

office sales in the United States. The distributor secures rights from the producer, undertakes 

marketing (including advertising in television, local and national media) and has to choose at 

which theaters to screen the movie. The theaters are owned by exhibitors such as AMC, Regal, 

AVCO, General Cinema, and Mann. Historically, distributors have been more dominant and 
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profitable than exhibitors in the motion picture industry. To achieve balance of power between 

these entities, there has been federal regulation and individual statutes passed by states. The aims 

of these statutes were to ensure that distributors picked exhibitors on a movie by movie basis 

using a competitive bidding process. A detailed overview of the history of anti-trust legislation in 

the motion picture industry can be found in Vany and Eckert (1991). However, with increasing 

overcapacity of screens and changes in technology that enables different channels of distribution 

such as DVD’s, satellite and the internet, the balance of power is again being shifted in favor of 

the distributors. Scott (2005) provides a comprehensive discussion of these issues. 

Distribution planning for a new movie is done far in advance of the actual release date. The 

studio (i.e., producer) announces the distributor several months before actual theatrical release of 

the movie. Then, the distributor solicits bids to exhibit the movie. In response, exhibitors contact 

the distributor with bids to screen the movie. These bids include a proposed set of theaters and 

their coverage territory, initial duration of play, and revenue sharing agreements. The distributor 

now needs to choose which exhibitors and theaters to use for the initial screening of the movie. 

This decision has to be made at least three months prior to the scheduled theatrical release of the 

movie. These decisions are then conveyed to the exhibitor. If the distributor picks a particular 

theater, this movie is scheduled to be shown there for the agreed period. If not, the exhibitor has 

the option to try other movies, as this planning takes place far in advance of when the movie is 

actually released in the theater. As the initial duration of play for the selected theaters expires 

(which is agreed by the contract), the distributor is free to add additional theaters as offers to 

show new movies are made by the exhibitors (Rothenberg 2003; McGrath, 2004). 

INSERT FIGURE 1 ABOUT HERE 
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The distribution planning problem involves forecasting theater-level box office revenues for 

a given movie and using these forecasts to choose the best locations to screen a movie. 

Distribution planning in the motion picture industry is made difficult by a complex environment. 

Forecasting box offices revenues for a given duration is challenging as movies are experiential 

products (Hirschmann and Holbrook, 1982) and, consequently, it is difficult to forecast their 

audience appeal until they are already available in the theaters. This is because audience appeal 

varies widely depending on movie attributes such as genre, star presence, special effects, MPAA 

ratings, critical reviews, etc. Even experienced analysts in the industry have not been very 

successful in forecasting box office revenues (Table 1). While there has been some academic 

research on aggregate box office forecasting, disaggregate theater-level forecasting is even 

harder due to dissimilarity in location specific characteristics of theaters, such as amenities and 

demographics (i.e., median income, age, population density, etc.). This causes significant 

differences in revenue for the same movie in different markets (Table 2). All these factors 

conspire to make the theater-level box office revenue forecasting problem in the motion picture 

industry an extremely challenging problem. Even after the forecasts are generated, picking the 

optimal location of theaters to show a particular movie is a challenging problem due to the large 

number of movies released each year by multiple distributors and the abundance in potential 

theater locations. For example there were 500 movies released in the year 2005 there were more 

than 7,000 possible theater locations in the United States and Canada to show these movies. 

INSERT TABLE 1 AND TABLE 2 ABOUT HERE 

Despite the practical relevance and complexity of this problem, we have found nothing in the 

academic or managerial literature that describes how to conduct effective distribution planning in 

the motion picture industry. This paper presents a method for addressing these issues and 



5 

addresses an important problem in entertainment operations management, an underrepresented 

area in the growing stream of research in service operations management (Apte et. al. 2008 and 

Spohrer and Maglio, 2008). Specifically, we have developed an empirical technique that 

provides a box office revenue estimate over time for a new motion picture at a selected theater. 

We use these estimates to model the distributor’s location selection problem as an integer 

programming model. This model chooses the location of theaters to screen the movie in order to 

optimize the distributor’s profits. We have tested our methods on actual industry data and show 

that our approach offers the potential to significantly improve box office profits for new movies.  

This paper is organized as follows. In Section 2, we review the relevant literature. In Section 

3, we develop an empirical method to estimate the theater-level box office revenue for a given 

movie. In Section 4, we formulate the distributor’s location selection problem. We develop 

heuristics to solve this problem and also construct upper bounds to evaluate the quality of these 

heuristics. We present computational results in Section 5. We use these results to assess the 

performance of our forecasting method and the heuristics to solve the distributor’s location 

selection problem. These results also provide insight into what affects theater-level box office 

revenue and the impact of these revenue estimates on the location choice decision. In Section 6, 

we test our methods on realistic box office data and show that it has the potential to significantly 

improve current industry practice. In the concluding section, we summarize our work and present 

future research directions. 
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2. LITERATURE REVIEW 

There is extensive literature on motion pictures in the popular press and in the film and television 

areas (Bart, 2000; Vogel, 2001; Hayes and Bing, 2004); however much of this is descriptive in 

nature and relies heavily on anecdotal industry knowledge. There is a limited, but emerging, 

stream of academic research focused on the motion picture industry. Eliashberg et al. (2006) 

provide a comprehensive overview on the critical issues in practice, current research and future 

research directions in the motion picture industry. Areas of research include product diffusion 

(Neelamegham and Chintagunta, 1999; Elberse and Eliashberg, 2003), seasonal release patterns 

(Krider and Weinberg, 1998; Einav, 2002), ancillary markets (Lehmann and Weinberg, 2000), 

and contract design and competition (De Vany and Walls, 1996). In the broader context of the 

entertainment industry, there has been work on scheduling commercial videotapes 

(Bollapragada, Bussieck and Mallik, 2004), managing on-air advertisement inventory 

(Bollapragada and Mallik, 2008), media revenue management (Araman and Popescu, 2009) and 

theme park flow management (Rajaram and Ahmadi, 2003). 

There has been a significant stream of research on aggregate box office forecasting of new 

motion pictures. Many previous studies have attempted to explain aggregate box office success 

as a function of movie attributes such as budget, star power, MPAA rating, release timing, and 

Academy Award nominations and winners (Litman and Ahn, 1998; Wyatt, 1994). Recent work 

focuses on the influence of a major distributor (Sochay, 1994), advertising and critical reviews 

on box office success (Zufryden, 1996; Eliashberg and Shugan, 1997; Zuckerman and Kim, 

2003). Sawhney and Eliashberg (1996) develop a parsimonious aggregate forecasting model and 

test it on realistic data. However, none of this work considers disaggregated theater-level box 

office revenue forecasts for a new movie. There have been several papers on scheduling of 
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screens with multiple movies (Swami et. al. 1999, Elisaberg et. al. 2009 and Dawande et. al. 

2010). This is an important tactical problem tactical question once the location of the theater to 

screen a movie is chosen, but these papers do not consider the broader strategic question on 

which theaters to show the movie, as addressed in distributor’s location selection problem.  

This paper makes the following contributions. First, we develop a method to calculate 

detailed disaggregated theater-level box office sales forecasts, based on both movie attributes 

and theater characteristics. Second, unlike the work discussed above, we directly consider the 

distributor’s location selection problem. Correct selection of theater location is essential to the 

ultimate box office success of a movie and we develop an optimization model to make this 

choice. Third, we test this model extensively on realistic data and show that it has the potential to 

significantly improve existing industry practice.  

 

3. FORECASTING THEATER-LEVEL BOX OFFICE REVENUES  

Consider a distributor who has to make box office revenue forecasts at each of the possible 

theaters where they could release a new movie. To provide a precise statement of this problem, 

we consider n possible theaters and let j ∈ N = (1,…, n) index the set of theaters. Let ijtπ  define 

the expected box office revenue forecast when movie i is shown at theater j in week t, where 

),,1( mMi K=∈  indexes the set of movies and ),,1( qQt K=∈  indexes the set of time periods. 

Estimating ijtπ  is critical for several reasons. First, when we tabulate total box office revenue 

across theaters over time (i.e., ),
1

t
n

j
ijt ∀∑

=
π , we get the adoption pattern for movie i. This pattern 

provides crucial guidance for various strategic decisions made by the distributor such as 

determining the marketing budget and eventually the distribution strategy (i.e., platforming, 
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wide, or saturation release) for the movie. This, in turn, is used in determining the maximum 

number of theaters across regions, the minimum play length at any theater, and, finally, in 

negotiating the revenue sharing contract during and after this minimum play length. Second, ijtπ  

is a key parameter in determining at which theaters the movie will be screened and, ultimately, 

its box office success.  

However, estimating ijtπ  is challenging for several reasons. First, it is difficult to understand 

which movie attributes and theater characteristics will affect theater-level box office revenue and 

how they do so. Second, it is challenging to estimate how this complex relationship between 

theater characteristics, movie attributes, and box office revenues changes over time. Finally, this 

estimation is difficult, as forecasting box office revenues requires an understanding of the 

individual moviegoer’s decision process to see a given movie and incorporating this process into 

the estimation method. 

Typical industry practice when forecasting box office revenues is to compare a new movie to 

recently released movies that are similar in one movie attribute and employ multiple, separate 

comparisons to study the effect of different movie attributes on box office revenues 

(Tannenbaum, 2001; Rothenberg 2003). In addition, some distributors also employ multiple 

regression analyses on a set of comparable attributes. While these procedures are simple and 

provide flexibility to incorporate subjective expertise, they are not very accurate. This is because 

this approach does not explicitly consider any of the above discussed aspects that make 

estimating πijt an immensely challenging problem. There are box office estimation models in the 

academic literature that incorporate some of these aspects. Most of these models run multiple 

regressions directly on box office revenue as a function of certain sets of movie attributes 

(Litman and Ahn, 1998). A major limitation of this method is that it only provides point 



9 

estimates for box office revenues by assuming an unrestricted horizon for exhibiting the movie. 

In addition, this approach does not consider significant variations in box office revenues across 

time periods and differences in adoption patterns across movies. Sawhney and Eliashberg (1996) 

developed a parsimonious model to forecast a movie’s box office success as a function of time. 

They employ an innovative method that incorporates an individual moviegoer’s decision process 

to adopt (or see) a given movie and also consider the impact of different movie adoption 

patterns. However, the objective of this model is to estimate box office revenue at the national or 

aggregate level, and this approach cannot be used to provide local or disaggregate location 

specific, theater-level estimates. 

To overcome the described challenges inherent in estimating πijt, we develop a four-step 

method. These steps are outlined in Figure 2. In Step 1, we extend the Sawhney and Eliashberg 

(1996) model to include location specific, theater-level characteristics. We estimate the 

parameters of this model using nonlinear regression on a historical database of realized box 

office revenues for selected movies. In Step 2, we use multiple regression models to link the 

estimated model parameters to movie attributes and theater characteristics corresponding to this 

historical database; then, we also consider any potential interactions between these variables. 

This step provides us with a function that estimates model parameters given a set of movie 

attributes and theater specific characteristics. In Step 3, we use this function to estimate the 

model parameters for a new movie given its attributes and the location specific characteristics of 

the theater under consideration. In Step 4, we use these estimates of the model parameters of 

Step 1 to estimate the box office revenue for the new movie at a given theater across time. 

Below, we describe each of these steps in detail. 

INSERT FIGURE 2 ABOUT HERE 
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Step 1: Incorporation of Theater-Level Characteristics  

In this step, we extend the Sawhney-Eliashberg (1996) model to include location specific, 

theater-level characteristics. Here, we assume that that an individual movie patron’s decision 

process to choose whether to watch a movie depends on two independent sub-processes: (1) the 

decision to see a movie p in theater j, followed by (2), the decision to visit theater j. These 

processes are modeled as stochastic processes with stationary parameters λpj representing the 

time-to-decide parameter and γpj representing the time-to-act parameter. Then, the expected time 

to decide becomes (1/λpj) and the expected time to act becomes (1/γpj). Although it is plausible 

that the time-to-decide process is mainly influenced by movie attributes, we believe that the 

availability of the chosen movie in a theater that is acceptable to the patron affects the time-to-

decide parameter. Once the individual has decided to watch a movie, the next decision is where 

to watch it, which is again influenced by theater characteristics.  

Following the approach of Sawhney and Eliashberg (1996), the expected cumulative number 

of adopters of movie p at theater j by time τ can then be expressed as:  

( )[ ]τγτλ λγγλ
γλ

ττ pjpj ee
N

PNNE pjpjpjpj
pjpj

pj
pjpjpj

−− −+−
−

== )()]([   (1) 

where Npj(τ) is the distribution of the cumulative number of adopters of movie p at theater j by 

time τ approximated using binomial distribution, Npj is the maximum potential market size in the 

vicinity of theater j, and Ppj(τ) is the cumulative density function of the event when an individual 

decides to see movie p in theater j and acts on the decision by time τ. We estimate parameters 

Npj, λpj, γpj by using nonlinear regression to fit (1) to historical data of theater-level box office 

revenues over time across a range of w movies at all the required theaters and let 

),,1( wHp K=∈  index these movies with historical data. 
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Step 2: Calibration of Regression Model Parameters from Historical Box Office 

Information 

The second step in the estimation process is to connect the estimated value of parameters 

HpNjN pjpjpj ∈∀∈∀ ,,ˆ,ˆ,ˆ γλ  from Step 1 to movie attributes, theater characteristics, and their 

possible interactions. To do this, we rely on multiple regressions based on the historical box 

office information Hp ∈∀  used in Step 1. 

Let Zi = (Z1i, …, ZAi) define the movie attribute vector for movie i.. Here, movie attributes 

include aspects such as such as genre, star presence, special effects, MPAA ratings, critical 

reviews, etc. To incorporate theater characteristics, let Sj = (S1j, …, SCj) define the vector of 

theater characteristics for theater j. These include location specific characteristics of theaters 

such as amenities and theater size, and demographics factors such as median income, age, 

population density, etc.  Then, the multiple regression equations to estimate the regression 

coefficients are: 

N
a c

jciaNcj
C

c
N

A

a
aiNNij SZSZN caca εωδβα +∑ ∑+∑+∑+=

Ω∈ Λ∈== '' ''
''

11 ''  ˆ , (2) 

λλλλλ εωδβαλ ∑ +∑+∑+∑+=
Ω∈ Λ∈== '' ''

''
11 ''  ˆ

a c
jciacj

C

c

A

a
aiij SZSZ caca ,  (3) 

γγγγγ εωδβαγ +∑ ∑+∑+∑+=
Ω∈ Λ∈== '' ''

''
11 ''  ˆ

a c
jciacj

C

c

A

a
aiij SZSZ caca .  (4) 

Here, αN, αλ and αγ denote the population intercepts and βNa,, βλa , and βγa 

( ),...,1( Aa =Ω∈ ), and δNc, δλc, and δγc ( ),...,1( Cc =Λ∈ ) represent the regression coefficients 

associated with vectors Z and S, respectively. In addition, the interaction terms associated with 
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regression coefficients are ωNa’c’ , ωλa’c’, and ωγa’c’, where Ω⊆Ω∈ ''a  and Λ⊆Λ∈ ''c . Finally, 

εN, ελ, and εγ are independent and identically distributed random error terms. 

 
Step 3: Estimation of Model Parameters for a New Movie 

Let sjsjsjN γλ ~ , ~,~  represent the model parameters for a new movie s in theater j. Once the 

regression coefficients of equations (2) through (4) are calculated, we use the known attributes 

),...( 1 Asss ZZZ =  of new movie s and individual theater characteristics at theater j to estimate 

parameters sjsjsjN γλ ~ and ~,~  as: 

∑ ∑+∑+∑+=
Ω∈ Λ∈== '' ''

''
11 ''  ~

a c
jcsaNcj

C

c
N

A

a
asNNsj SZSZN caca ωδβα   (5) 

∑ ∑+∑+∑+=
Ω∈ Λ∈== '' ''

''
11 ''  ~

a c
jcsacj

C

c

A

a
assj SZSZ caca λλλλ ωδβαλ ,   (6) 

∑ ∑+∑+∑+=
Ω∈ Λ∈== '' ''

''
11 ''  ~

a c
jcsacj

C

c

A

a
assj SZSZ caca γγγγ ωδβαγ .  (7) 

 
Step 4: Estimation of Theater-level Box Office Revenues for a New Movie 

In this step, we use the estimates of sjsjsjN γλ ~ and ~,~  from (5) through (7) in (1) to estimate 

)](~[ τsjNE , the expected cumulative number of adopters for new movie i at theater j until time τ, 

as: 

( ) 



 −+−

−
=

−− τγτλ λγγλ
γλ

τ sjsj ee
N

NE sjsjsjsj
sjsj

sj
sj

~~ ~~~~
~~

~
)](~[ . (8) 

Let φj be the ticket price at theater j and t = τ2-τ1 be the time interval under consideration. 

Then, we calculate sjtπ as: 
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jsjsjsjt NENE φττπ )])(~[)](~[( 12 −= .    (9) 

In Section 5, we conduct computational experiments to test the accuracy of this method. 

 

4. THE DISTRIBUTOR’S LOCATION SELECTION PROBLEM 

Once we forecast theater-level box office revenues, the distributor needs to use this forecast to 

choose at which theaters to show a new movie, in order to maximize profits. To address this 

problem, we consider n possible theaters and let j, j’ ∈ N = (1,…, n) index the set of theaters. 

These movie theaters are located in r regions indexed by r ∈ P = (1,…, u).  

Define the variables: 





=
otherwise0

moviegiven  ascreen  chosen toistheaterif1 j
W j  

We are given: 

 

K(MAX ) : maximum number of theaters required across all regions 
)(MIN

rK  : minimum number of theaters required in region r 





=
otherwise0

regioninlocatedistheaterif1 rj
L jr  





=
otherwise  0

'ter  with theacompetes  theater if  1
'

jj
b jj  

 

Here, parameter )(MAXK  is defined by the type of distribution strategy (i.e., limited, 

platforming, wide, or saturation release) chosen for the particular movie. The distribution 

strategy is chosen to be consistent with the marketing budget for a given movie. Next, the 

regions chosen are often major metropolitan areas. The minimum number of theaters per region 
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is often specified by past experience. Finally, parameters 'jjb  are derived from the coverage 

territory specified by the exhibitor in each territory. The coverage territory is defined by a set of 

competing theaters that need to be excluded in each territory, which in turn specifies ',,' jjb jj ∀ . 

Recollect that ijtπ  defines the expected box office revenue forecast when movie i is shown at 

theater j in week t, where ),,1( mMi K=∈  indexes the set of movies and ),,1( qQt K=∈  

indexes the set of time periods. Let Qtij ∈ denote the duration chosen by the exhibitor to show 

movie i at theater j. Note that tij can optimally chosen using the models described in Swami et al. 

(1999), (2001) or Somlo (2005) and is affected by the minimum play length P(MIN) fixed by a 

contractual agreement between the distributor and exhibitor. Then, the distributor’s expected box 

office profit during this period is given by ∑
=

−=
ijt

t

D
ijijt

D
ijt

D
ij cs

1
πθ  where D

ijc is the distribution cost 

of movie i to theater j, and constant D
ijts  represents the portion of revenues allocated to the 

distributor for movie i at theater j during week t. This factor depends on the duration chosen by 

the exhibitor and the nature of the contractual agreement between the exhibitor and distributor.  

The Distributor’s Location Selection Problem (DLSP) can be represented by the following 

binary integer program: 

(DLSP)  ∑=
=

n

j
j

D
ij

D
i WV

1
Max θ  (10) 

Such that:  ∑ ∑ ≤
= =

u

r

n

j

MAX
jjr KWL

1 1

)(  (11) 

       ∑
=

∀≥
n

j

MIN
rjjr rKWL

1

)( ,  (12) 
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       jjjWbW jjjj ≠∀≤+ ',      ,1''  (13) 

       { } jWj ∀∈ ,1,0  (14) 

 
Objective function (10) is chosen to maximize the distributor’s total expected box office 

profits for movie i by the appropriate choice of theaters. Constraint (11) ensures that the total 

number of theaters selected to screen a movie does not exceed K(MAX). Constraints (12) guarantee 

that a set minimum number of theaters are picked for each region. Constraints (13) ensure that 

the distributor does not pick competing theaters. This is important because a distributor often 

chooses multiple exhibitors to show a movie. Consequently, to prevent dilution of sales at the 

selected theater, exhibitors require that competing theaters within the vicinity are not picked. 

Finally, 0-1 integrality of the variables is imposed by constraints (14).  

The DLSP can be used by the distributor to determine the optimal set of theaters for the 

initial screening of a movie. As the minimum play length commitment for the theaters expires, 

the distributor is free to add additional theaters as new offers to show the movie are made by 

exhibitors. In this case, the distributor would need to consider the set of theaters in which the 

movie still has to be shown, reduce (min)
rK at the appropriate regions, reduce )(MAXK  by the 

total number of theaters where the movie is still being shown, remove the additional theaters for 

which constraint (13) will not be feasible, and resolve the DLSP. Note that this approach also can 

be used to include preferred theaters in the beginning or in later iterations of the DLSP. Here the 

preferred theaters are akin to the theaters where the movie still has to be shown. Such preferred 

theaters may be necessary to maintain a long-term relationship with the exhibitor. Also note that 

this model can be extended to multiple movies. Here, we would first need to index the 

parameters and variables of the DLSP by movie index i. Then, the objective function for the 
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DLSP for multiple movies would now be ∑
=

m

i

D
iV

1
and we would have constraints (11) through 

(14) for each movie i. Since this problem is decomposable by movie or index i, we could use the 

same solution procedure to solve the DLSP with a single movie. 

 

Proposition 1: The DLSP is NP-Complete. 

Proof: The maximum weighted independent set problem can be derived as a special instance of 

the DLSP by setting the coefficients rjL jr ,,∀  to zero. Since it is known that the weighted 

independent problem is NP-Complete (Garey and Johnson, 2000), this reduction establishes that 

the DLSP is NP-Complete. ■ 

 

In light of Proposition 1, it is unlikely that we could solve large, realistic problems to optimality. 

In particular, we found in our computational analysis that we could not find solutions using 

leading commercial software tools such as the XPRESS and CPLEX solvers in GAMS (Brooke 

et al. 1992) when the number of theaters is large (over 1800 theaters) and when each theater has 

many competing theaters (averaging over seven per theater). Consequently, we elected to 

develop heuristics to solve such instances of this problem. We also present upper bounds to 

evaluate the quality of these heuristics. 

 

4.1 Upper Bounds 

To develop upper bounds on the DLSP, one could relax one or more of constraints (11) through 

(13) by introducing Lagrange multipliers and solving the resulting sub-problem optimally. Then, 

this sub-problem can be optimized over the multipliers to provide a tight upper bound. However, 

the upper bound from any such relaxation would be no smaller than a simple linear programming 
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relaxation of the DLSP, in which we relax constraint (14) by allowing Wj ∈ [0,1], ∀j. This is 

because relaxations of the DLSP involving constraints (11) through (13) have the integrality 

property (Geoffrion, 1974), as established by the following proposition. 

 
Proposition 2: Relaxations of the DLSP involving constraints (11) through (13) possess the 

integrality property.  

Proof: We can represent the DLSP in a generalized matrix form as 

},,|{Max XxdCxbAxfx
x

∈≤≤ , where A, b, C, d, and f are the appropriate matrices, Ax ≤ b 

represents the set of constraints we keep, Cx ≤ d represents the set of constraints we relax, and x 

∈ X represents the integrality constraints. Let Co{x ε X | Cx ≤ d} represent the convex hull 

formed by the constraints we relax. Since in the DLSP Kr
(MIN), K(MAX) ∈ N+ , ∀r and Ljr, bjj’ ∈ 

{0,1}, ∀r, j, j’ note that Co{x ∈ X | Cx ≤ d} = {x | Cx ≤ d} for any relaxation involving 

constraints (11), (12), and (13). It follows from Geoffrion (1974) that any relaxation of the DLSP 

involving these constraints has the integrality property. ■ 

 
In light of Proposition 2, we generate an upper bound for the DLSP by solving its linear 

programming relaxation with Wj ∈ [0,1], ∀j. 

 

4.2 Heuristics 

In general, the solution provided by the upper bounds may not be feasible for the DLSP due to 

the violation of the integrality constraints (14). To achieve feasibility, we develop the following 

heuristics. 

 



18 

1. The Myopic Heuristic 

In the myopic heuristic, we select theaters by first ignoring constraints (13) and optimally 

solving the resulting problem. Then, we develop an interchange procedure that is aimed at 

satisfying constraints (13). Recollect that )(MIN
rK  represents the minimum number of regions 

required in region r, )(MAXK  is the maximum number of theaters across all regions, and D
ijθ is 

the distributors expected box office profit for movie i at theater j. This heuristic is formalized in 

the following steps. 

Step 1: In each region, select Kr
(MIN) theaters in descending order of D

ijθ . This satisfies 

constraints (12). Remove the selected theaters from consideration. Sort all of the remaining 

theaters in descending order of D
ijθ and pick an additional 








∑−
=

u

r

MIN
r

MAX KK
1

)()(  theaters. 

Thus, constraint (11) is binding.  

Step 2: We consider the theaters selected by Step 1 and look for those theaters that violate 

constraints (13). We first remove the violating theater with the lowest D
ijθ . We then find a 

replacement theater which has the highest possible D
ijθ  without violating constraints (13). This 

procedure is repeated until all violating theaters across all regions are eliminated.  

 
2. The Profit/Competition Heuristic 

This heuristic attempts to select the most profitable theaters with the least number of competitors 

and consists of the following steps: 
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Step 1: Calculate the ratio ∑=
≠ jj

jj
D
iji bR

'
'/θ  for each theater. iR  can be regarded as the scaled 

expected box-office profit for the distributor from movie i at theater j. The scale factor 

∑
≠ jj

jjb
'

' )/(1  decreases as ∑
≠ jj

jjb
'

' , the number of competing theaters for theater j, increases. 

Step 2: For each region, select the theater with highest ratio and in the case of a tie select the 

theater with the lowest number of competing theaters. Note that by picking the theaters in this 

ratio, we implicitly reduce the number of competing theaters. This in turn ensures that it is more 

feasible to pick subsequent theaters without drastic reduction in revenues. Once this theater is 

selected, remove all the competing theaters from consideration. If, at this point, constraint (12) is 

satisfied, go to next region. If constraint (12) is not satisfied, pick the ratio with the next highest 

value and repeat this procedure. Continue until constraint (12) is satisfied. If this still does not 

lead to a feasible solution, restart this procedure with the theater with the next highest ratio and 

continue until this constraint is satisfied. Repeat this step for every region. 

Step 3: Remove all theaters selected in Step 2 from consideration. 

Step 4: Consider the theaters that have not been removed in Steps 2 or 3 and choose the 

remaining ∑−
=

u

r

MIN
r

MAX KK
1

)()(  theaters in decreasing order of ∑
≠ jj

jj
D
ij b

'
'/θ . After each 

selection, remove the competing theaters associated with the chosen theater. 

Note that this heuristic attempts to satisfy constraints (12) and (13) in Step 2, and constraint 

(11) and (14) in Step 4. In the next section, we test the performance of our method to estimate 

ijtπ  and also the effectiveness of both these heuristics and the upper bound across a variety of 

data sets.  
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5. COMPUTATIONAL STUDY 

The financial box office data required for the computational study was purchased from Nielsen 

Entertainment Data Incorporated (EDI) located in Beverly Hills, California. We selected theaters 

located within the continental United States and purchased data of weekly box office revenues 

for all movies played at a given theater between May 22, 2000 and May 25, 2001.4 The time 

period was chosen to completely cover an entire major release period during summer. The 

sample consisted of 149 movies and 1,218 theaters. This sample of movies accounted for 98.42% 

of box office revenues during this period. In addition to purchasing financial data, we built two 

separate databases to collect information regarding movie attributes and theater characteristics 

corresponding to the movies and theaters in this period. These were created using Microsoft 

Access 2000. Data for the movie attributes were gathered from the Internet Movie Database 

(http://imdb.com/), Baseline Filmtracker (http://www.baseline.hollywood.com/), and Box Office 

Guru (http://www.boxofficeguru.com/), while data for the theater characteristics were gathered 

from the National Association of Theater Owners (http://www.natoonline.org/) and the U.S. 

Census Bureau (http://www.census.gov/).  

 

5.1. Results of Estimation Method 

We summarize our results corresponding to the sequence of steps in the estimation method 

outlined in Section 5. 

 
 
 
 
                                                           
4 To check whether the sample represents a typical year of movie releases, we tested the difference between the 
proportions of movies released over time and across genres in the previous and following years. We could accept the 
null hypothesis at the 95% confidence level that the two sample population proportions are equal in each class. 
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Step 1: Incorporation of Theater-level Characteristics  

We use nonlinear regression to approximate the model parameters: the maximum potential 

market size (Nj), time-to-decide (λj), and time-to-act (γj) for a given movie. To execute this 

regression, we used the Levenberg-Marquardt algorithm (Bates and Watts, 1988) of the NLIN 

procedure of SAS, a commercially available statistical software (SAS, 2003). To ensure 

convergence during these runs, it was critical to specify good starting values for the nonlinear 

regression. Therefore, we employed a grid search to obtain good starting values for the 

parameters. Results of the parameter approximation for selected pairs of movies and theaters are 

presented in Table 3.  

INSERT TABLE 3 ABOUT HERE 

From Table 3, we make three important observations. First, note that the magnitude of 

estimated box office revenue for the same movie can change significantly across theaters. For 

example, the estimated box office revenue for the movie WOMEN varied from $31,400 to 

$171,535. Thus, including location specific theater characteristics in the box office estimation 

procedure is an important aspect in optimizing box office profits. Second, different movies lead 

to vastly dissimilar revenues at the same theater. For example, consider the theater FENW in 

Table 3. The revenues for the three movies shown for the same duration vary from around 

$22,640 to $255,337. This confirms the intuition that movie attributes have a significant 

influence on theater-level box office revenues. Third, even when estimated box office revenues 

were similar, these could have been derived from very dissimilar parameter estimates and 

adoption patterns. For instance, the estimated box office revenue for movie LIESBTH at theater 

WYNN was $22,607 and the estimate for the movie VELN at theater FENW was $22,691; 

however, the estimate for LIESBTH at theater WYNN was based on N = 22.994, λ = 26.168, and 

γ = 0.341, while the box office estimate for VELN at theater FENW was based on 
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N = 23.049, λ = 2.43, and γ = 2.043. This meant that LIESBTH followed an exponential shaped 

adoption pattern, whereas VELN’s adoption pattern was consistent with the shape of the Erlang-

2 distribution. These differences in adoption patterns have very different implications for the 

distribution strategy of these movies and, ultimately, for parameter K(MAX).  

Since the market size, time-to-act and time-to-decide parameters vary significantly across 

movies and theaters and lead to different adoption patterns, it is critical that they are estimated by 

incorporating the impact of both movie attributes and theater characteristics; however, we found 

that we could not develop generalizations or simple rules to determine how these aspects affected 

these parameters. To overcome this, we resorted to multiple regressions, described in the next 

step.  

 
Step 2: Calibration of Regression Model Parameters from Historical Box Office 

Information 

To run the multiple regression connecting the parameters of movie characteristics and theater 

attributes, we collected 1,218 parameter triplets ( pjpjpjN γλ ˆ , ˆ,ˆ ) Hp ∈∀  from the nonlinear 

regression of Step 1. Note that each triplet corresponds to a theater across a range of movies. We 

divided these theater-triplets into two sets, so that each set had approximately the same number 

of movies. The first set is the calibration sample with 609 theater triplets and 75 movies used to 

calibrate the multiple regression coefficients. The second was the holdout sample with the 

remaining 609 theater-triplets and 74 movies, which was used to test the validity of the 

regression results in Steps 3 and 4. We employed the IML procedure, a multiple regression 

routine in SAS to run the regressions. The regression results showed that homoscedasticity 

(equal variance) was violated, so, to correct this problem, we transformed the dependent 

variables to their natural logarithm. The regression results are summarized in Table 4.  
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INSERT TABLE 4 ABOUT HERE 

The regression results show that movie attributes and theater characteristics are good 

predictors of maximum theater-level box office revenues ( 53.02 =NR ). As a comparison, we also 

ran a multiple regression model using only movie attributes. We found that the predictive power 

of the regression came down significantly ( 25.02 =NR ). This provides strong support to include 

theater characteristics in our forecasting model. In addition, this regression in general possesses 

more predictive power for the time-to-act parameter (γ) than for the time-to-decide parameter (λ) 

(  27.0,15.0 22 == γλ RR ). These results also provide interesting insight into which movie 

attributes and theater characteristics affect Ν, λ, and γ. 

Movie attributes that significantly affect box office revenues include production budget, 

critics’ reviews, genre, and release date. As expected, higher budget and positive critics’ reviews 

add to box office success. Certain genres, specifically animation and fantasy, influenced box 

office revenues since fantasy and sci-fi movies usually cater to specialized crowds. These results 

were similar to those of Litman and Ahn (1998). We also found that spring release dates 

adversely impacted box office revenues, possibly because of springtime travel and the restart of 

outdoor activities. Significant theater characteristics affecting box office revenues included 

increased presence of competing theaters, amount of discount on the ticket price, median age, 

population density, and geographical location specified in one of seven, broadly classified 

regions in the United States. We found that the presence of competing theaters positively 

impacted box office revenues at a particular theater. While this result seems counter-intuitive, 

this could be due to clustering effect (Pinkse and Slade, 1998; Tannenbaum, 2001; Chisholm and 

Norman, 2002) in which the collective presence of stores offering the same or similar services 

allows better tapping into higher demand in urban areas. As expected, the size of the ticket 
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discount was negatively correlated with box office revenues and explained why distributors often 

request that the number of discounted tickets be limited. We also found that median age was 

negatively correlated to box office revenue, while increased population density positively 

influenced box office revenue. Finally, the geographical location of a theater had a significant 

impact on box office revenue. 

The time-to-decide parameter, λ, was influenced by movie attributes and theater 

characteristics. Several movie related attributes, such as fantasy and animation genres, star 

presence, and movies heavy in special effects, were positively correlated with λ. This is because 

these attributes pull audiences into theaters earlier, reducing the expected time to decide. On the 

other hand, restrictive MPAA ratings and winter release timing were negatively correlated with 

λ, since these attributes dampen interest and, thus, increase the expected time to decide. 

Significant theater characteristics included adult prices and number of screens. As anticipated, 

the magnitude of the discount on ticket prices was positively correlated with λ, as this reduced 

the time to decide. In addition, increasing the number of screens was negatively correlated with 

λ. This is because increasing the number of screens typically increased the time to decide 

presumably due to the perception that when there are more screens, the duration of movies would 

be longer and this could also reduce the chances of movies being sold out in subsequent weeks.  

Movie attributes such as wider MPAA ratings and winter or spring opening dates were 

negatively correlated with γ. This is because these attributes increase the expected time to act. 

Conversely, genre (animation and fantasy) and sequels were positively correlated with γ, since 

they typically catered to special audiences whose expected time to act is smaller. A highly 

significant theater characteristic was the number of competing theaters within a five-mile radius. 
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As expected, this was positively correlated with γ since the previously described clustering effect 

could reduce the expected time to act. 

Finally, we list the results on the interaction of theater related variables with movie related 

ones. None of the interaction terms proved to be significant predictors of box office revenue in 

our sample, but could be significant in other samples. 

 
Steps 3 and 4: Estimation of Model Parameters and Theater-level Box Office Revenues for 

a New Movie 

We define a new movie as a movie shown in theaters in the holdout part of our sample. To 

validate the multiple regression results, we estimated model parameters pjpjpjN γλ ~ , ~,~ , 

calculated box office revenue estimates for the holdout sample, and compared those estimates to 

the actual, achieved box office revenue. To better assess the performance of the box office 

estimation procedure, we also developed a benchmark model. This was based on a multiple 

regression model directly running box office revenue against the complete set of movie attributes 

that was used for our model without including any theater characteristics. This benchmark model 

itself was an enhancement on industry practice that was based upon choosing one movie attribute 

per simple regression run and employing multiple separate regressions to study the effects of 

different movie attributes on box office result (Tannenbaum, 2001; Rothenberg, 2003). We 

observed heteroscedasticity (unequal variance) in the error terms; therefore, we transformed the 

actual box office measure to its logarithm. The predictive power of the benchmark model was 

significantly weaker than that of our model. In addition, we observed that critics’ ratings were 

positively correlated with box office revenue estimates, while this estimate was negatively 

correlated to spring season release dates.  
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Across the entire holdout sample consisting of 609 theaters and 74 movies, the average 

forecast error of our method was 15%, while the average forecast error for the benchmark model 

was 60%. Thus, our method reduces average forecast errors from the benchmark model by 75%. 

Table 5 summarizes actual box office sales across all theaters, aggregate forecasts and forecast 

error (expressed as a percentage of actual box office sales) for a select sample of movies for our 

method and the benchmark model. We next use the estimates of box office revenues from our 

method to test the DLSP.  

INSERT TABLE 5 ABOUT HERE  

 

5.2 Results of the Distributor’s Location Selection Problem 

The parameters required for the DLSP, such as the portion of revenues allocated to the 

distributor, distribution costs, maximum number of theaters, and minimum number of theaters 

sought per region, were set based on specific movie level information. In addition, the key inputs 

to the DLSP were expected theater-level box office sales (i.e., ijtπ ) and the duration of play (i.e. 

tij). We estimated ijtπ  employing the procedure outlined in Section 3, while tij was calculated by 

the model described in Somlo (2005).  

We used XPRESS, a mixed-integer programming solver in GAMS, to solve the DLSP. This 

generated optimal solutions for instances of the DLSP, when, on average, each theater had less 

than seven competing theaters. The average time for each run was around 53 seconds. However, 

we found that when each theater had more than seven competing theaters on average, GAMS 

could not solve the DLSP. This provided the motivation for developing the heuristics (i.e., lower 

bounds) to address this problem and upper bounds to evaluate the quality of the heuristics. A 

specialized Microsoft VisualStudio.Net program was written to calculate the lower bounds using 
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the heuristics in Section 4.1. To derive the upper bound, we solved the DLSP as a linear program 

using XPRESS in which Wj is relaxed to be continuous between 0 and 1.  

To examine how our models perform on larger problems, we used the reference data to 

construct larger problems with n theaters and m movies, where n = 3,000 and 6,000 and m = 150 

and 300. We first analyzed the historical box office data and defined the probability distributions 

for the significant variables in the multiple regressions defined by (2) through (4). We then ran 

Monte Carlo simulations on these variables to generate expected theater-level revenues for these 

larger problems for the required choice of n and m; however, we observed that some of these 

simulations generated several gigabytes of data without providing additional insight on the 

performance of the forecasting technique and the DLSP. Therefore, after careful consideration, 

we elected to analyze the 3000-theater problem for the DLSP across 150 movies. 

Table 6 summarizes some of our salient results from our computational tests. In this table, a 

row represents the solution technique used. These included the optimal solutions generated by 

GAMS, the upper bound generated by the LP relaxation in GAMS, and the lower bounds based 

on the myopic and greedy heuristics. Columns in the table represent the problem size of the 

DLSP represented by the number of theaters, movies, and the competition density, which is the 

average number of competing theaters per theater. Based on our discussion with several industry 

experts (Tannenbaum, 2001, Rothenberg 2003, McGrath, 2004) and to cover a broad range of 

scenarios, we picked the competition density to be 6, 11 and 15. The numbers in the body of the 

table describe the percentage gap of the given technique from a reference point, if that technique 

was successful in generating a solution for the given problem. Since the DLSP problems were 

solved to optimality at a competition density level of six competitors per theater, this was used as 

a reference point. However, GAMS was unable to generate optimal solutions for problems with 
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higher competition densities. Consequently, the upper bound was used as this reference for the 

remaining problems. 

INSERT TABLE 6 ABOUT HERE  

Our computational results have been quite encouraging. From Table 6, observe that when we 

use the myopic heuristic for a competition density level of 15 competitors per theater, the 

average gap from the upper bound was 10.3%, while the corresponding gap with the greedy 

heuristic was 11.2%. As the competition density level decreased, the performance of both 

heuristics improved. For instance, the average gaps for the 6-competitors-per-theater problem 

reduced to 1.8% and 1.3% for the myopic and greedy heuristics, respectively. We also wanted to 

better understand the circumstances under which the percentage gaps change. This could provide 

us with insights into how to improve the upper bound and the heuristics. We observe from our 

analysis that these gaps were uniformly higher when the number of available theaters for 

selection was higher. Conversely, the gaps were significantly lower when the number of 

available theaters was lower. It is important to note that these gaps were reduced because the 

upper bound became tighter. These results show that the heuristics perform well across a range 

of data and there is scope to improve the upper bounds. 

To test how sensitive the value of the heuristics were to estimates of theater-level box office 

revenues, we scaled πijt by (1-x) and (1+ x) where x = 0.1, 0.2, and 0.3. Note that our scaling 

procedure resulted in 6 additional data sets for the 3,000-theater, 150-movie problem set at a 

density level of 15 competitors per theater. Table 7 summarizes the average gaps for the myopic 

and greedy heuristics. These results show that average gaps for the myopic heuristic ranged from 

10.3% to 10.95%, while the corresponding gaps for the greedy heuristic ranged from 11.2% to 

12.7%. These results show that the heuristics were not significantly sensitive to estimation errors 
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in πijt and, thus, provide a reliable basis to address this problem. To see how sensitive the 

solutions of the heuristics were to the estimates of πijt, we compared the optimal theater locations 

selected across the heuristics for the scaled values of πijt . We found that, while the total number 

of locations and the composition of those locations in terms of theater types were stable, the 

actual locations proposed by the different solutions varied with differences of scale in πijt.  

INSERT TABLE 7 ABOUT HERE 

The stability in the value of the heuristics and the total number of locations can be reassuring, 

but can also be misleading to the movie distributor. It is reassuring because the distributor can 

select the number of theaters prescribed by its general distribution plan using reasonably accurate 

theater-level revenue forecasts over time. On the other hand, the stability might mislead the 

distributor into thinking that one has to only consider the same set of theaters across different 

movies. However, due to changes in movie attributes, the set of theaters may vary widely across 

movies. For instance, across the 150 movies, we found that on average only 43% of the theaters 

were common. This result reinforces the importance of including theater characteristics and 

movie attributes when determining the distribution plan. 

We wanted to better understand the effects of minimum play length P(MIN) and consequently 

tij on the solution of the DLSP. Distributors consider this parameter vital toward achieving the 

desired exposure, which in turn will affect the financial potential of a movie. Consequently, they 

go to great lengths to ensure that the agreed-upon screen is allocated to the particular movie for 

the requested period of time. We tested our procedures with P(MIN) set to 3 weeks as the base 

case, and 2 and 4 weeks as alternative settings for the 3,000-theater, 150-movie, 15-competitors-

per-theater problem. The sensitivity analysis of this parameter provided several interesting 

insights. 
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We compared the solutions with the alternative values of P(MIN) to the base case and found 

that a major shift occurs in the optimal theater locations when the minimum play length 

requirement was changed. At first glance, the change in the number of theaters and the actual 

selection were minimal, but a more detailed analysis on the new set of theaters revealed a 

significant difference in the type of theaters to target. The extent of this change in the types of 

theaters is surprising and goes unrecognized by distributors. For example, the total number of 

theaters selected by the DLSP showed a very modest increase from 740 to 750 theaters when we 

change P(MIN) from 3 to 2 weeks. However, more than 55% of the theaters recommended for the 

base case were replaced for the shortened commitment period. The new solution selected more 

mini-type theaters in neighborhoods with moderate income in contrast with the original 

solution’s heavy dominance by multi- and mega-theaters in high income areas. When we change 

P(MIN) from 3 to 4 weeks, the total number of theaters decreased from 740 to 670, as the movie 

had to be shown for a longer duration, but, here again, more than 41% of the chosen theaters 

differed from the base case and where different theater types. Here mega and multi-theaters were 

preferred over mini-theaters. This shows that the minimum play length requirement strongly 

influences the type of theaters that needs to be chosen, and distributors should carefully examine 

the effect of changing P(MIN) on theater choice before agreeing to change it on a movie-by-movie 

basis. The DLSP provides a structured and robust basis for conducting this assessment. 

 

6. APPLICATION 

We have compared the methods detailed in this paper to the theater selection decisions made by 

motion picture distributors on realistic data for the 3,000 theater, 150-movie problem with the 

number of average competing theaters set to the highest level of 15 competitors per theater. We 
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then ran the myopic and greedy heuristic to solve the DLSP for each movie and picked the best 

solution. 

Next, we constructed a distribution plan for a given movie replicating the procedure that 

distributors would have used in practice, based on extensive discussions with several leading 

distributors (Rothenberg, 2003; McGrath, 2004; Molter, 2004). In this procedure, distributors 

first ranked theaters in decreasing order of historical revenues across all movies. If necessary, the 

distributors modified the initial ranking by weighting sales along with a key attribute rank. For 

instance, consider the case of when a movie is targeted towards a certain ethnicity (for example, 

African-American viewers). In this case, theaters in a region would be ranked in decreasing order 

of the proportion of that ethnicity in the vicinity of the theater’s location. A final ranking will be 

developed by assigning weights to the sales and ethnicity rankings. Next, they picked the highest 

ranked theaters in each region while ensuring that the minimum number of theaters and 

competition constraints where met in each region. Finally, they also made sure that the total 

number of theaters across regions did not exceed the maximum number of theaters required, 

which was set based upon the distribution strategy derived from the marketing budget for each 

movie.  

We wanted to compare our method with the distributor’s procedure. To ensure that the 

quality of the theater-level box office forecast and the duration of play did not affect this 

comparison, theater rankings were developed using theater-level revenue forecasts using our 

estimation procedure, while the optimal duration of play for a given movie at each theater was 

determined by the model in Somlo (2005). Comparing our method with the distributor’s 

procedure, we found that theaters chosen by our method were 51% different on average than 

those selected by the distributor. In addition, had our method been implemented, this would have 
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increased the average box office profit by $2,950 per theater, or by an average of $1.8 million 

per movie. This translates to a 12% increase in expected distributor’s box office profit. In 

addition, absolute revenue and individual percentage improvements for some movies were as 

high as $5 million or 33%, respectively  

It is important to note that these numbers underestimate true gains. In practice, the 

distributor’s method would have performed worse than these results indicate without the 

advantage of the optimal duration of play for each movie determined using the model in Somlo 

(2005). We believe that our method outperforms the distributor’s procedure because its 

allocation of theaters is based not just on a ranking of historical sales volumes across all movies 

or a ranking based on weighting of sales along with certain attributes, but matching all the key 

attributes of a given new movie with the characteristics of the theater under consideration. For 

instance, consider the movie “What Women Want”. The distributor’s approach chose theaters 

with historically high sales in areas where the ethnicity was predominantly white at each of the 

regions. In contrast, our approach chose smaller theaters in urban areas with a higher percentage 

of singles and with higher population densities. This lead to an average increase of box office 

profit by $1000 per theater or around $1.3 million in total possibly due to the appeal of this 

movie with singles who typically lived in more densely populated urban areas. As an additional 

example, consider the movie “Meet the Parents”. The distributors again choose theaters with 

historically high sales in predominantly white neighborhoods. In addition to considering 

ethnicity, our approach allocated more theaters in the Midwest and the South Central region and 

in higher income neighborhoods. This led to an average increase in box office profits per theater 

of $1100 or $1.5 million across all theaters perhaps due to the movies appeal with conservative 
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and affluent audiences. These examples provide further evidence that including theater level 

characteristics is crucial to effective distribution planning in the motion picture industry. 

 

7. CONCLUSIONS 

Our goal in this paper is to expose the reader to an intellectually engaging problem context laden 

with opportunities for research that can have a high impact on profits in the motion picture 

industry. The following conclusions can be drawn from this research. 

• There are significant differences in revenue across the same movie in different theaters 

due to dissimilarity in location specific characteristics at the theater such as amenities and 

demographics (e.g., median income, age and population density). Therefore, it is 

important to develop detailed, disaggregate theater-level box office forecasts and to use 

these forecasts to determine the distribution plan that decides on which theaters to show a 

given movie. 

• Forecasting theater-level, box office revenues is challenging as it requires an 

understanding of which movie attributes and theater characteristics will affect revenues, 

how they do so, and how this changes over time. In addition, one needs to also 

understand how the decision process of individual moviegoers to see a given movie 

affects theater-level forecasts and how this can be integrated into the forecasting process. 

The estimation procedure developed in this paper incorporates these aspects into 

determining detailed, theater-level revenue forecasts. This procedure reduces average 

forecast error by over 75% compared to benchmark models based on industry practice. 

• Given theater-level revenue forecasts over time, the distributor faces the problem of 

determining at which theaters to show a given movie in order to optimize profits. This 
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problem is complicated because a minimum number of theaters has to be selected in each 

region and because the distributor needs to ensure that competing theaters are not 

selected. The DLSP provides an effective basis to approach this problem. We also found 

that this model was robust with variations in the theater-level revenue forecast and 

provides a basis to understanding the impact of changes in minimum play length on 

theater choice. In addition, the DLSP outperformed the method used by the distributors to 

select theaters and has the potential to increase average distributor profits by 12%, or 

around $1.8 million per movie. 

This paper provides several avenues for future research. First, refinements could be developed to 

further improve the accuracy of the theater-level box office revenue forecasting procedure. 

Second, improvements could be made on the heuristics to increase the profits from the DLSP. 

Finally, the approach developed in this paper in which we determine the best locations to show a 

movie by estimating profit as a function of movie (or product) attributes and theater (or location) 

characteristics can be applied in a variety of service industry settings. For instance, one could use 

this idea to choose the best locations for concerts in the music industry, to determine the optimal 

location of specialty boutiques in the retail industry, and to pick the locations of resorts and 

restaurants in the hospitality industry. The modifications required to apply our model in these 

contexts could be a promising area for new research. 

In conclusion, we believe that the methods presented in this paper provide a useful method to 

forecast theater-level box office revenues and use these forecasts to choose the best locations to 

screen the movie to optimize the distributor’s profit in the motion picture industry. 
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Table 1. Examples Of Missed Box Office Forecasts 

Title 
 

NRG Estimate(1) 
($M) 

Actual Box Office
($M) 

Relative Percentage 
Error (2) 

X-Men 29.5 54.5 -45.9% 

The Mummy Returns 50 70.1 -28.7% 
Charlie’s Angels 28 40.1 -30.2% 
The Perfect Storm 21.5 41.3 -47.9% 
Chicken Run 9 17.5 -48.6% 
The Patriot  25 22.4 +11.6% 
The Story of Us 18 9.7 +8.6% 
Fight Club 14 11 +27.3% 
Titan A. E. 12.5 9.4 +33% 
Star Wars -Episode I. 150 105.7 +41.9% 
(1) National Research Group’s estimate of the opening weekend box office. 
(2) Relative percentage error = (NRG Estimate – Actual BO) / Actual BO. 

Source: IMDB and Variety. 

 

Table 2. Box Office Revenues At Selected Markets 

Markets* The Matrix Reloaded Star Wars: Episode II 

Boston $38,371 $35,829 

Cleveland $21,105 $21,559 

Dallas $31,207 $35,385 

Denver $31,423 $28,663 

New York $36,968 $53,499 

Pittsburgh $23,193 $18,683 

San Francisco $60,336 $60,169 

St. Louis $22,813 $23,410 

Tampa $25,043 $25,763 
* Movies are shown in the same number of theaters in each market and revenues reported are Friday to Sunday 

averages over duration of play. 

Data Source: Nielsen EDI’s Box Office Sample. 
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Table 3. Results of the Nonlinear Regression for Selected Movie-Theater Pairs 

Theater
Type Theater Film T

(wks)
Actual BO
($1,000) N λ γ

Type of
Pattern

Predicted BO
($1,000) Absolute MSE

Multi WYNN LIESBTH 12 23.009 22.994 26.168 0.341 Exponential 22.607 1.75% 1.172
Multi WYNN PROOF 5 4.798 5.712 0.659 0.659 Erlang-2 4.802 0.01% 0.387
Multi WYNN WOMEN 11 32.248 32.318 2.946 0.335 Gen. Gamma 31.400 2.63% 1.773
Multi FENW VALEN 3 22.640 23.049 2.043 2.043 Erlang-2 22.691 0.23% 0.097
Multi FENW CHARLIE 9 255.337 254.914 7.011 0.573 Gen. Gamma 253.314 0.79% 6.193
Multi FENW CHICKEN 10 151.711 154.752 59.795 0.391 Exponential 151.615 0.06% 2.723
Multi KTLA CHICKEN 7 48.535 53.029 98.852 0.379 Exponential 49.283 1.54% 1.744
Multi KTLA WOMEN 7 59.411 64.666 3.559 0.369 Gen. Gamma 59.221 0.32% 0.988
Multi KTLA FOCKER 11 76.058 90.369 16.231 0.183 Exponential 78.126 2.72% 3.762
Mega ALIS CHICKEN 7 131.560 134.969 5.662 0.550 Gen. Gamma 131.783 0.17% 1.846
Mega ALIS WOMEN 8 171.214 175.080 5.031 0.501 Gen. Gamma 171.535 0.19% 3.506
Mega ALIS LIESBTH 9 146.500 146.282 45.437 0.487 Exponential 144.430 1.41% 4.836
Mega HADL CHARLIE 8 50.418 51.558 11.083 0.565 Exponential 50.965 1.09% 1.903
Mega HADL CHICKEN 6 37.547 41.732 10.523 0.385 Exponential 37.429 0.07% 0.522
Mega HADL WOMEN 11 56.044 56.213 6.311 0.364 Gen. Gamma 55.126 1.64% 1.980
Mini FAUL HEADOV 3 1.626 1.911 1.195 1.195 Erlang-2 1.668 2.58% 0.122
Mini FAUL SHAFT 5 6.581 7.352 6.509 0.476 Gen. Gamma 6.616 0.53% 0.086
Mini FAUL DISKID 4 10.375 13.230 4.536 0.412 Gen. Gamma 10.434 0.56% 0.189
Mini HANF CHARLIE 10 26.963 27.751 89.985 0.399 Exponential 27.235 1.01% 0.779
Mini HANF SPYKIDS 9 24.654 25.281 3.691 0.399 Gen. Gamma 24.497 0.64% 0.889
Mini HANF FOCKER 11 30.190 37.810 17.694 0.151 Exponential 30.537 1.15% 1.166

Single GRAH NUTTY 4 23.089 24.612 10.631 0.715 Exponential 23.100 0.05% 0.027
Single GRAH DRSEUSS 5 41.800 44.285 14.218 0.518 Exponential 40.841 2.30% 2.170
Single CMEO MISSCON 7 36.838 38.496 36.113 0.406 Exponential 36.231 1.65% 1.154

Average Errors 1.05% 1.67%
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Table 4. Multiple Regression Results Relating Model Parameters with Theater 
Characteristics and Movie Attributes 

 Dependent Variables (Standard Errors In Parentheses) 
 Multiple Regression Model Benchmark 
 Log N Log λ Log γ Log Actual 

Intercept 3.584* 
(0.281) 

2.374* 
(0.397) 

-0.831* 
(0.193) 

3.000* 
(0.200) 

Theater Related Variables     

Rockies Region -0.282** 
(0.144) 

0.010 
(0.203) 

0.161 
(0.099) 

 

North Central Region -0.584* 
(0.119) 

-0.091 
(0.168) 

0.064 
(0.082) 

 

South Central Region -0.231** 
(0.113) 

0.156 
(0.160) 

0.108 
(0.078) 

 

Midwest Region -0.173 
(0.147) 

0.127 
(0.207) 

0.137 
(0.100) 

 

North Eastern Region -0.440* 
(0.088) 

-0.025 
(0.124) 

0.092 
(0.060) 

 

South Eastern Region -0.291* 
(0.105) 

0.059 
(0.147) 

0.062 
(0.72) 

 

Median Age -0.015*** 
(0.008) 

-0.007 
(0.011) 

0.008 
(0.005) 

 

Percentage Of Singles 0.009 
(0.005) 

0.005 
(0.008) 

0.004 
(0.004) 

 

Population Density (1,000s) 0.012* 
(0.004) 

-0.011** 
(0.005) 

-0.003 
(0.003) 

 

Median Household Income ($1,000s) 0.001 
(0.002) 

-0.001 
(0.003) 

0.001 
(0.001) 

 

Adult Ticket Price ($) 0.269* 
(0.057) 

0.169** 
(0.080) 

0.043 
(0.039) 

 

Ticket Discount ($) -0.143*** 
(0.085) 

0.019 
(0.120) 

0.022 
(0.058) 

 

Stadium Seating 0.364* 
(0.065) 

0.032 
(0.092) 

0.010 
(0.045) 

 

Mini Type (2-7) -0.172 
(0.265) 

-0.780** 
(0.375) 

-0.067 
(0.182) 

 

Multi Type (8-15) -0.148 
(0.264) 

-0.799** 
(0.373) 

0.086 
(0.181) 

 

Mega Type (16+) -0.071 
(0.275) 

-0.737 
(0.389) 

0.192 
(0.189) 

 

Numbers Of Neighboring Theaters 
(5 Miles) 

0.015** 
(0.007) 

-0.003 
(0.009) 

0.012** 
(0.005) 

 

Numbers Of Neighboring Theaters 
(10 Miles) 

-0.002 
(0.009) 

-0.018 
(0.013) 

-0.008 
(0.006) 

 

Numbers Of Neighboring Theaters 
(15 Miles) 

-0.004 
(0.004) 

0.013** 
(0.005) 

0.001 
(0.003) 

 

Movie Related Variables     

Runtime (Min) 0.000 
(0.002) 

0.004 
(0.003) 

-0.002 
(0.002) 

-0.002 
(0.003) 

Production Budget ($M) 0.008* 
(0.001) 

-0.001 
(0.002) 

-0.001 
(0.001) 

0.004** 
(0.002) 

MPAA Rating 0.053 
(0.050) 

-0.136*** 
(0.07) 

-0.087* 
(0.034) 

0.049 
(0.065) 
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 Dependent Variables (Standard Errors In Parentheses) 
 Multiple Regression Model Benchmark 
 Log N Log λ Log γ Log Actual 

Critics’ Rating 0.305* 
(0.033) 

0.031 
(0.046) 

0.148* 
(0.022) 

0.330* 
(0.044) 

Special Effects 0.063 
(0.086) 

0.276** 
(0.122) 

0.046 
(0.060) 

0.119 
(0.113) 

Star Presence 0.042 
(0.077) 

0.211*** 
(0.109) 

0.003 
(0.053) 

0.030 
(0.101) 

Sequel 0.192 
(0.171) 

-0.120 
(0.242) 

0.154 
(0.118) 

0.165 
(0.224) 

Animation Genre -0.325*** 
(0.173) 

0.555** 
(0.244) 

0.397* 
(0.119) 

-0.328 
(0.223) 

Comedy Genre (0.097 
(0.082) 

0.215 
(0.115) 

-0.063 
(0.056) 

0.157 
(0.106) 

Drama Genre -0.113 
(0.108) 

0.176 
(0.156) 

0.054 
(0.075) 

-0.051 
(0.142) 

Horror Genre 0.024 
(0.127) 

0.280 
(0.180) 

0.063 
(0.088) 

0.072 
(0.181) 

Fantasy Genre -0.360* 
(0.128) 

0.374** 
(0.180) 

0.263* 
(0.088) 

-0.227 
(0.168) 

Holiday Period Opening 0.050 
(0.079) 

-0.499* 
(0.111) 

-0.067 
(0.054) 

0.167 
(0.103) 

Winter Period Opening 0.051 
(0.095) 

-0.220 
(0.135) 

-0.198* 
(0.065) 

-0.046 
(0.125) 

Spring Period Opening -0.229** 
(0.098) 

-0.231 
(0.139) 

-0.050 
(0.066) 

-0.253*** 
(0.133) 

Fall Period Opening -0.094 
(0.094) 

-0.145 
(0.133) 

-0.190* 
(0.065) 

0.015 
(0.123) 

Interaction Terms     

Median Age * MPPA Rating -0.003 
(0.006) 

-0.002 
(0.008) 

-0.006 
(0.004) 

 

% Of Singles * MPAA Rating -0.006 
0.004) 

-0.003 
(0.005) 

-0.003 
(0.002) 

 

Median Household * Rating 0.001 
(0.001) 

0.001 
(0.002) 

-0.001 
(0.001) 

 

Population * Rating -0.002 
0.002) 

0.005 
(0.004) 

0.003 
(0.002) 

 

Star Presence * Median Age 0.013 
(0.010) 

-0.002 
(0.015) 

-0.001 
(0.007) 

 

Star Presence * % Of Singles -0.007 
0.005) 

0.003 
(0.008) 

-0.003 
(0.004) 

 

Model R2 0.5337 0.1510 0.2719 0.2004 
Adjusted R2 0.4998 0.0893 0.2190 0.1774 
F Value 15.74 2.45 5.14 8.70 
Pr > F <0.0001 <0.0001 <0.0001 <0.0001 
N 605 605 605 607 

* Statistically significant at 1%. ** Statistically significant at 5%. *** Statistically significant at 10%. 
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Table 5: Actual Vs Forecast Revenues Across All Theaters for Forecasting Method and 
Benchmark Model for Selected Movies 
 

Title Actual 
Box 

Office 
Revenues

($M) 

Revenues 
Estimate 

of Method 
(($M) 

Relative 
Percentage 

Forecast 
Error(3) 

Revenues 
Estimate of 
Benchmark 
Model (($M) 

Relative 
Percentage 

Forecast 
Error (4) 

Shaft 70.3 61.9 -12 34.4 -51
Disney' The Kid 69.7 77.4 11 36.2 -48

What Lies Beneath 155.4 183.4 18 265.7 71
The Nutty Professor II 123.3 106 -14 61.7 -50

Meet the Parents 166.2 191.1 15 275.9 66
What Women Want 182.8 199.3 9 283.3 55
Miss Congeniality 106.8 97.2 -9 71.6 -33

The Wedding Planner 60.4 69.5 15 105.7 75
Enemy at the gates 51.4 59.6 16 92.5 80

Spy Kids 112.7 98 -13 67.6 -40
(3) Relative percentage forecast error = (Method Estimate – Actual BO) / Actual BO. 
(4) Relative percentage forecast error = (Benchmark Model Estimate – Actual BO) / Actual BO. 
 

Table 6. Average Percentage Gaps from Tightest Bound across 150 Problems for the 
DLSP 

Average  
(Minimum/ Maximum) 

Problem Size 
(Theaters/ Movies/ Competition Density) 

3000/ 150/ 6 3000/ 150/ 11 3000/ 150/ 15 

Optimal Solution: Gams * N/A N/A 

Upper Bound: Linear Programming Relaxation 5.24% * * 

Lower Bounds:    

Myopic Heuristic 1.8% 8.2% 10.3% 

Greedy Heuristic 1.3% 8.7% 11.2% 

 

Table 7 Average Percentage Gaps From Upper Bound with Scaled πIjt. 

Scale Factor -30% -20% -10% 0% 10% 20% 30% 

Myopic 
Heuristic 10.95 10.6 10.5 10.3 10.7 10.8 10.9 

Greedy 
Heuristic 12.6 12.2 11.7 11.2 11.7 12.3 12.7 
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Figure 1. The Motion Picture Industry Supply Chain 
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Figure 2. Methodology For Estimation Of πijt: Theater-level Box Office Revenues For 
A New Movie 
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