
THE FINITE ELEMENT METHOD 
AND APPLICATIONS IN 

ENGINEERING USING ANSYS® 



THE FINITE ELEMENT METHOD 
AND APPLICATIONS IN 

ENGINEERING USING ANSYS® 

by 

Erdogan Madenci 
Ibrahim Guven 

The University of Arizona 

Springer 



Erdogan Madenci 
The University of Arizona 

Ibrahim Guven 
The University of Arizona 

Library of Congress Control Number: 2005052017 

ISBN-10: 0-387-28289-0 e-ISBN-10: 0-387-28290-4 
ISBN-13: 978-0387-28289-3 e-ISBN-13: 978-0387-282909 

© 2006 by Springer Science-nBusiness Media, LLC 
All rights reserved. This work may not be translated or copied in whole or in part 
without the written permission of the publisher (Springer Science + Business 
Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief 
excerpts in connection with reviews or scholarly analysis. Use in connection with 
any form of information storage and retrieval, electronic adaptation, computer 
software, or by similar or dissimilar methodology now known or hereafter 
developed is forbidden. 
The use in this publication of trade names, trademarks, service marks and similar 
terms, even if they are not identified as such, is not to be taken as an expression 
of opinion as to whether or not they are subject to proprietary rights. 

Printed in the United States of America 

9 8 7 6 5 4 3 

springer.com 



PREFACE 

The finite element method (FEM) has become a staple for predicting and 
simulating the physical behavior of complex engineering systems. The 
commercial finite element analysis (FEA) programs have gained common 
acceptance among engineers in industry and researchers at universities and 
government laboratories. Therefore, academic engineering departments 
include graduate or undergraduate senior-level courses that cover not only 
the theory of FEM but also its applications using the commercially available 
FEA programs. 

The goal of this book is to provide students with a theoretical and practical 
knowledge of the finite element method and the skills required to analyze 
engineering problems with ANSYS®, a commercially available FEA 
program. This book, designed for seniors and first-year graduate students, as 
well as practicing engineers, is introductory and self-contained in order to 
minimize the need for additional reference material. 

In addition to the fundamental topics in finite element methods, it presents 
advanced topics concerning modeling and analysis with ANSYS®. These 
topics are introduced through extensive examples in a step-by-step fashion 
from various engineering disciplines. The book focuses on the use of 
ANSYS® through both the Graphics User Interface (GUI) and the ANSYS® 
Parametric Design Language (APDL). Furthermore, it includes a CD-ROM 
with the "inpuf files for the example problems so that the students can 
regenerate them on their own computers. Because of printing costs, the 
printed figures and screen shots are all in gray scale. However, color 
versions are provided on the accompanying CD-ROM. 

Chapter 1 provides an introduction to the concept of FEM. In Chapter 2, the 
analysis capabilities and fundamentals of ANSYS®, as well as practical 
modeling considerations, are presented. The fundamentals of discretization 
and approximation functions are presented in Chapter 3. The modeling tech­
niques and details of mesh generation in ANSYS® are presented in Chapter 
4. Steps for obtaining solutions and reviews of results are presented in 
Chapter 5. In Chapter 6, the derivation of finite element equations based on 
the method of weighted residuals and principle of minimum potential energy 
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is explained and demonstrated through example problems. The use of 
commands and APDL and the development of macro files are presented in 
Chapter 7. In Chapter 8, example problems on linear structural analysis are 
worked out in detail in a step-by-step fashion. The example problems related 
to heat transfer and moisture diffusion are demonstrated in Chapter 9. 
Nonlinear structural problems are presented in Chapter 10. Advanced topics 
concerning submodeling, substructuring, interaction with external files, and 
modification of ANSYS®-GUI are presented in Chapter 11. 

There are more than 40 example problems considered in this book; solutions 
to most of these problems using ANSYS® are demonstrated using GUI in a 
step-by-step fashion. The remaining problems are demonstrated using the 
APDL. However, the steps taken in either GUI- or APDL-based solutions 
may not be the optimum/shortest possible way. Considering the steps 
involved in obtaining solutions to engineering problems (e.g., model 
generation, meshing, solution options, etc.), there exist many different 
routes to achieve the same solution. Therefore, the authors strongly encour­
age the students/engineers to experiment with modifications to the analysis 
steps presented in this book. 

We are greatly indebted to Connie Spencer for her invaluable efforts in typ­
ing, editing, and assisting with each detail associated with the completion of 
this book. Also, we appreciate the contributions made by Dr. Atila Barut, 
Mr. Erkan Oterkus, Ms. Abigail Agwai, Mr. Manabendra Das, and Mr. 
Bahattin Kilic in the solution of the example problems. The permission 
provided by ANSYS, Inc. to print the screen shots is also appreciated. 
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Chapter 1 

INTRODUCTION 

1.1 Concept 
The Finite Element Analysis (FEA) method, originally introduced by Turner 
et al. (1956), is a powerful computational technique for approximate solu­
tions to a variety of "real-world" engineering problems having complex 
domains subjected to general boundary conditions. FEA has become an 
essential step in the design or modeling of a physical phenomenon in vari­
ous engineering disciplines. A physical phenomenon usually occurs in a 
continuum of matter (solid, liquid, or gas) involving several field variables. 
The field variables vary from point to point, thus possessing an infinite 
number of solutions in the domain. Within the scope of this book, a 
continuum with a known boundary is called a domain. 

The basis of FEA relies on the decomposition of the domain into a finite 
number of subdomains (elements) for which the systematic approximate 
solution is constructed by applying the variational or weighted residual 
methods. In effect, FEA reduces the problem to that of a finite number of 
unknowns by dividing the domain into elements and by expressing the 
unknown field variable in terms of the assumed approximating functions 
within each element. These functions (also called interpolation functions) 
are defined in terms of the values of the field variables at specific points, 
referred to as nodes. Nodes are usually located along the element bound­
aries, and they connect adjacent elements. 

The ability to discretize the irregular domains with finite elements makes the 
method a valuable and practical analysis tool for the solution of boundary, 
initial, and eigenvalue problems arising in various engineering disciplines. 
Since its inception, many technical papers and books have appeared on the 
development and application of FEA. The books by Desai and Abel (1971), 
Oden (1972), Gallagher (1975), Huebner (1975), Bathe and Wilson (1976), 
Ziekiewicz (1977), Cook (1981), and Bathe (1996) have influenced the 
current state of FEA. Representative common engineering problems and 
their corresponding FEA discretizations are illustrated in Fig. 1.1. 
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Fig. 1,1 FEA representation of practical engineering problems. 

The finite element analysis method requires the following major steps: 

• Discretization of the domain into a finite number of subdomains (ele­
ments). 

• Selection of interpolation functions. 
• Development of the element matrix for the subdomain (element). 
• Assembly of the element matrices for each subdomain to obtain the global 

matrix for the entire domain, 
• Imposition of the boundary conditions. 
• Solution of equations. 
• Additional computations (if desired). 

There are three main approaches to constructing an approximate solution 
based on the concept of FEA: 

Direct Approach: This approach is used for relatively simple problems, 
and it usually serves as a means to explain the concept of FEA and its 
important steps (discussed in Sec. 1.4). 



INTRODUCTION 3 

Weighted Residuals: This is a versatile method, allowing the applica­
tion of FEA to problems whose functional cannot be constructed. This 
approach directly utilizes the governing differential equations, such as 
those of heat transfer and fluid mechanics (discussed in Sec. 6.1). 

Variational Approach: This approach relies on the calculus of varia­
tions, which involves extremizing a functional. This functional corre­
sponds to the potential energy in structural mechanics (discussed in Sec. 
6.2). 

In matrix notation, the global system of equations can be cast into 

Ku = F (1.1) 

where K is the system stiffness matrix, u is the vector of unknowns, and 
F is the force vector. Depending on the nature of the problem, K may be 
dependent on u , i.e., K = K(u) and F may be time dependent, i.e., 
F = F ( 0 . 

1.2 Nodes 
As shown in Fig. 1.2, the transformation of the practical engineering prob­
lem to a mathematical representation is achieved by discretizing the domain 
of interest into elements (subdomains). These elements are connected to 
each other by their "common" nodes. A node specifies the coordinate 
location in space where degrees of freedom and actions of the physical 
problem exist. The nodal unknown(s) in the matrix system of equations 
represents one (or more) of the primary field variables. Nodal variables 
assigned to an element are called the degrees of freedom of the element. 

The common nodes shown in Fig. 1.2 provide continuity for the nodal 
variables (degrees of freedom). Degrees of freedom (DOF) of a node are 
dictated by the physical nature of the problem and the element type. Table 
1.1 presents the DOF and corresponding ''forces" used in FEA for different 
physical problems. 

i^i.y^) {x,.y<) (?^5.y,) 

{^A.yd 

common nodes 

common 
nodes 

common 
nodes 

Fig. 1.2 Division of a domain into subdomains (elements). 
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Table 1.1 Degrees of freedom and force vectors in 
FEA for different engineering disciplines. 

Discipline 
Structural/solids 
Heat conduction 
Acoustic fluid 
Potential flow 
General flows 
Electrostatics 

Magnetostatics 

DOF 
Displacement 
Temperature 

Displacement potential 
Pressure 
Velocity 

Electric potential 
Magnetic potential 

Force Vector 
Mechanical forces 

Heat flux 
Particle velocity 
Particle velocity 

Fluxes 
Charge density 

Magnetic intensity 

1.3 Elements 
Depending on the geometry and the physical nature of the problem, the 
domain of interest can be discretized by employing line, area, or volume 
elements. Some of the common elements in FEA are shown in Fig. 1.3. 
Each element, identified by an element number, is defined by a specific 
sequence of global node numbers. The specific sequence (usually counter­
clockwise) is based on the node numbering at the element level. The node 
numbering sequence for the elements shown in Fig. 1.4 are presented in 
Table 1. 2. 

z z z 
tetrahedral right prism irregular hexahedal 

volume elements 

Fig, 1.3 Description of line, area, and volume elements with node 
numbers at the element level. 
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global node local node 
number number 
6 ""^ 5 4 3 3 ^ ^ 2 

3 ' 

element 2 

local node ̂  
number' 

Fig. 1.4 Discretization of a domain: element and node numbering. 

Table 1.2 Description of numbering at the element level. 

Element 
Number 

1 
2 
3 

Nodel 

1 
3 
4 

Node 2 

2 
4 
5 

Node 3 

6 
6 
6 

Node 4 

7 
2 

1.4 Direct Approach 
Although the direct approach is suitable for simple problems, it involves 
each fundamental step of a typical finite element analysis. Therefore, this 
approach is demonstrated by considering a linear spring system and heat 
flow in a one-dimensional (1-D) domain. 

1.4.1 Linear Spring 

As shown in Fig. 1.5, a linear spring with stiffness k has two nodes. Each 
node is subjected to axial loads of /j and /2 , resulting in displacements of 
Wj and ^2 ^^ their defined positive directions. 

Subjected to these nodal forces, the resulting deformation of the spring 
becomes 

W = Wj - ^ 2 (1.2) 

1 2 
-O-AA/WV 

Fig. 1.5 Free-body diagram of a linear spring element. 
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which is related to the force acting on the spring by 

/i = to = /:(«! -W2) (1-3) 

The equiUbrium of forces requires that 

/ 2 = - / i (1.4) 

which yields 

f2=k{u2-u^) (1.5) 

Combining Eq. (1.3) and (1.5) and rewriting the resulting equations in 
matrix form yield 

k -k 

-k k 
or k^V^Uf(^) (1.6) 

in which û ^̂  is the vector of nodal unknowns representing displacement 
and k̂ ^̂  and f̂^̂  are referred to as the element characteristic (stiffness) 
matrix and element right-hand-side (force) vector, respectively. The super­
script {e) denotes the element numbered as ' e '. 

ie) The stiffness matrix can be expressed in indicial form as /:••' 

k̂ ^̂  - klf^ (1.7) 

where the subscripts / and j (/,7=1,2) are the row and the column 
numbers. The coefficients, kjf^, may be interpreted as the force required at 
node / to produce a unit displacement at node j while all the other nodes 
are fixed. 

1,4.2 Heat Flow 

Uniform heat flow through the thickness of a domain whose in-plane 
dimensions are long in comparison to its thickness can be considered as a 
one-dimensional analysis. The cross section of such a domain is shown in 
Fig. 1.6. In accordance with Fourier's Law, the rate of heat flow per unit 
area in the x -direction can be written as 

q = -kA^ (1.8) 
ax 
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e. qi 

Fig. 1.6 One-dimensional heat flow. 

where A is the area normal to the heat flow, 6 is the temperature, and k is 
the coefficient of thermal conductivity. For constant k , Eq. (1.8) can be 
rewritten as 

q--kA 
L 

(1.9) 

in which A^ = ̂ 2~^i denotes the temperature drop across the thickness 
denoted by L of the domain. 

As illustrated in Fig. 1.6, the nodal flux (heat flow entering a node) at Node 
1 becomes 

The balance of the heat flux requires that 

q2=-q\ 

which yields 

92 = - ^ ( ^ 1 - ^ 2 ) 

(1.10) 

(1.11) 

(1.12) 

Combining Eq. (1.10) and (1.12) and rewriting the resulting equations in 
matrix form yield 

kA 

L 

1 -1 

-1 1 
WW 
KJ U2. 

or k^^V^UqW (1.13) 
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in which 9̂ ^̂  is the vector of nodal unknowns representing temperature and 
k̂ ^̂  and q̂ ^̂  are referred to as the element characteristic matrix and 
element right-hand-side vector, respectively. 

1.4.3 Assembly of the Global System of Equations 

Modeling an engineering problem with finite elements requires the assembly 
of element characteristic (stiffness) matrices and element right-hand-side 
(force) vectors, leading to the global system of equations 

Ku = F (1.14) 

in which K is the assembly of element characteristic matrices, referred to 
as the global system matrix and F is the assembly of element right-hand-
side vectors, referred to as the global right-hand-side (force) vector. The 
vector of nodal unknowns is represented by u . 

The global system matrix, K ^ can be obtained from the "expanded" 
element coefficient matrices, k^^ ,̂ by summation in the form 

E 

K = 2k^^> (1.15) 

in which the parameter E denotes the total number of elements. The 
''expanded" element characteristic matrices are the same size as the global 
system matrix but have rows and columns of zeros corresponding to the 
nodes not associated with element (e). The size of the global system matrix 
is dictated by the highest number among the global node numbers. 

Similarly, the global right-hand-side vector, F , can be obtained from the 
''expanded" element coefficient vectors, f ̂ ^̂ , by summation in the form 

E 

F = f̂̂ ^^ (1.16) 
e=l 

The "expanded" element right-hand-side vectors are the same size as the 
global right-hand-side vector but have rows of zeros corresponding to the 
nodes not associated with element {e). The size of the global right-hand-side 
vector is also dictated by the highest number among the global node 
numbers. 
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The explicit steps in the construction of the global system matrix and the 
global right-hand-side-vector are explained by considering the system of 
linear springs shown in Fig. 1.7. Associated with element (e), the element 
equations for a spring given by Eq. (1.6) are rewritten as 

^22 

M) 

M) 

I f(^) 
Ml 

I f (̂ ) 

(1.17) 

in which k (e) 
11 ' 99 — and hie) _ ae) _ _Ue) 

'^12 "'^2\ " '^ The subscripts used in 
Eq. (1.17) correspond to Node 1 and Node 2, the local node numbers of 
element {e). The global node numbers specifying the connectivity among 
the elements for this system of springs is shown in Fig. 1.7, and the 
connectivity information is tabulated in Table 1.3. 

^F 

Fig. 1.7 System of linear springs (top) and corresponding 
FEA model (bottom). 

Table 1.3 Table of connectivity. 

Element 
Number 

1 

2 

3 

4 

Local Node 
Numbering 

1 
2 

1 
2 

1 
2 

1 
2 

Global Node 
Numbering 

1 
2 

2 
3 

2 
3 

3 
4 
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In accordance with Eq. (1.15), the size of the global system matrix is (4x4) 

and the specific contribution from each element is captured as 

E 
Element 1: 

i 
Element 2: 

^21 

H 
Element 3: 

^̂ 21 

i 
Element 4: hi 

^̂ 21 
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(1.21) 

K = ^ k ( ^ U k ( H k ( 2 ) + k ( 3 ) ^ ^ (4) (1.22) 
«=i 

or 
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K = 

"ll 

0 

0 

(^22 "''̂ 11 "'"̂ U j 

(^21 •'"^21 j 

0 

0 

(̂ 1̂2 +^12 ) 

y-22 +^22 """̂ ll j 
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0 

0 

7.(4) 

Hi 
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11 

(1.23) 

In accordance with Eq. (1.16), the size of the global right-hand-side vector is 
(4x1) and the specific contribution from each element is captured as 

Element 1: 
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•^(1) 
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Similarly, performing their assembly leads to 

4 
p - y f C e ) =f(l) +f(2) ^f(3) ^f(4) 

(1.24) 

(1.25) 

(1.26) 

(1.27) 

(1.28) 
e=\ 

or 
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(1.29 F = 

Consistent with the assembly of the global system matrix and the global 
right-hand-side vector, the vector of unknowns, u , becomes 

u = < 

Wj 

^ 2 

W3 

W4 

> = < 

« « i 

4'̂  . 

(1.30) 

1.4.4 Solution of the Global System of Equations 

In order for the global system of equations to have a unique solution, the 
determinant of the global system matrix must be nonzero. However, an 
examination of the global system matrix reveals that one of its eigenvalues 
is zero, thus resulting in a zero determinant or singular matrix. Therefore, 
the solution is not unique. The eigenvector corresponding to the zero eigen­
value represents the translational mode, and the remaining nonzero 
eigenvalues represent all of the deformation modes. 

For the specific values of k^l^ = k^2 ~ ^̂ ^̂  
global system matrix becomes 

and kl'2^ •^21 ••-k 
(e) the 

-l.ie) K = k 

1 - 1 0 0 

- 1 3 -2 0 

0 - 2 3 - 1 

0 0 - 1 1 

(1.31) 

with its eigenvalues / l i=0, / l2=2, A^ =3-^/5 , and /I4 = 3 + v5 . The 
corresponding eigenvectors are 



INTRODUCTION 13 

u(>)=S 

r 
1 

1 
>, u ( 2 ) ^ . 

r 
-1 

-1 

1 

>, u(^>=< 

-1 

-2 + V5 
1 

>, u(^>=. 

-1 1 
2 + S 
-2-V5 

1 

(1.32) 

Each of these eigenvectors represents a possible solution mode. The contri­
bution of each solution mode is illustrated in Fig. 1.8. 

In order for the global system of equations to have a unique solution, the 
global system matrix is rendered nonsingular by eliminating the zero 
eigenvalue. This is achieved by introducing a boundary condition so as to 
suppress the translational mode of the solution corresponding to the zero 
eigenvalue. 
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Fig. 1,8 Possible solution modes for the system of linear springs. 

1.4.5 Boundary Conditions 

As shown in Fig. 1.7, Node 1 is restrained from displacement. This 
constraint is satisfied by imposing the boundary condition of Wj = 0. Either 
the nodal displacements, u^, or the nodal forces, / ) , can be specified at a 
given node. It is physically impossible to specify both of them as known or 
as unknown. Therefore, the nodal force /j remains as one of the unknowns. 
The nodal displacements, ^2, W3, and u^ are treated as unknowns, and the 
corresponding nodal forces have values of /2 = 0, /a = 0, and f^ = F , 

These specified values are invoked into the global system of equations as 
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•Ae) 

1 -1 

-1 3 

0 -2 

0 0 -1 

leading to the following equations: 

0 0 

-2 0 

3 -1 

1 

[«! =0 

" 2 
< 

"3 

I " 4 

> = < 

\ '̂ 1 
/ 2 = 0 | 

/3=0 

i/4=H 

(1.33) 

•Ae) 

3 -2 

-2 3 

0 -1 

Ol 
-1 

1J 

[«2 
]"3 
l "4 . 

> = . 

'Ol 
0 

/ . 

(1.34) 

and 

- ^ ^ % = / l (1.35) 

The coefficient matrix in Eq. (1.34) is no longer singular, and the solutions 
to these equations are obtained as 

3 F 
Uo = • 

Ae) 
Un = 

2k^e) ' 
UA = 

5 F 
2kie) (1.36) 

and the unknown nodal force /j is determined as fi=-F . The final 
physically acceptable solution mode is shown in Fig. 1.9. 

There exist systematic approaches to assemble the global coefficient matrix 
while invoking the specified nodal values (Bathe and Wilson 1976; Bathe 
1996). The specified nodal variables are eliminated in advance from the 
global system of equations prior to the solution. 

1 ® 2/~'^^^'^^^^^"'^3 ® 4 
—AVVVv—<f V^vWvV— 

undeformed 
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acceptable • 

solution mode 
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I 2 

3 
-•-

3 
-f-

4 

u, = Flk"' ti,= 1.5 FIk'" u, = 2.5F/k"' 

Fig. 1.9 Physically acceptable solution mode for the system of 
linear springs. 



Chapter 2 

FUNDAMENTALS OF ANSYS 

2.1 Useful Definitions 
Before delving into the details of the procedures related to the ANSYS 
program, we define the following terms: 

Jobname: A specific name to be used for the files created during an 
ANSYS session. This name can be assigned either before or after start­
ing the ANSYS program. 

Working Directory: A specific folder (directory) for ANSYS to store all 
of the files created during a session. It is possible to specify the Working 
Directory before or after starting ANSYS. 

Interactive Mode: This is the most common mode of interaction be­
tween the user and the ANSYS program. It involves activation of a 
platform called Graphical User Interface {GUI), which is composed of 
menus, dialog boxes, push-buttons, and different windows. Interactive 
Mode is the recommended mode for beginner ANSYS users as it pro­
vides an excellent platform for learning. It is also highly effective for 
postprocessing. 

Batch Mode: This is a method to use the ANSYS program without acti­
vating the GUI It involves an Input File written in ANSYS Parametric 
Design Language {APDL), which allows the use of parameters and 
common programming features such as DO loops and IF statements. 
These capabilities make the Batch Mode a very powerful analysis tool. 
Another distinct advantage of the Batch Mode is realized when there is 
an error/mistake in the model generation. This type of problem can be 
fixed by modifying a small portion of the Input File and reading it 
again, saving the user a great deal of time. 

Combined Mode: This is a combination of the Interactive and Batch 
Modes in which the user activates the GUI and reads the Input File. 
Typically, this method allows the user to generate the model and obtain 
the solution using the Input File while reviewing the results using the 
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Postprocessor within the GUL This method combines the salient advan­
tages of the Interactive and Batch Modes, 

1.1 Before an ANSYS Session 
The construction of solutions to engineering problems using FEA requires 
either the development of a computer program based on the FEA formula­
tion or the use of a commercially available general-purpose FEA program 
such as ANSYS. The ANSYS program is a powerful, multi-purpose analysis 
tool that can be used in a wide variety of engineering disciplines. Before 
using ANSYS to generate an FEA model of a physical system, the following 
questions should be answered based on engineering judgment and observa­
tions: 

• What are the objectives of this analysis? 
• Should the entire physical system be modeled, or just a portion? 
• How much detail should be included in the model? 
• How refined should the finite element mesh be? 

In answering such questions, the computational expense should be balanced 
against the accuracy of the results. Therefore, the ANSYS finite element 
program can be employed in a correct and efficient way after considering 
the following: 

• Type of problem. 
• Time dependence. 
• Nonlinearity. 
• Modeling idealizations/simplifications. 

Each of these topics is discussed in this section. 

2,2.1 Analysis Discipline 

The ANSYS program is capable of simulating problems in a wide range of 
engineering disciplines. However, this book focuses on the following dis­
ciplines: 

Structural Analysis: Deformation, stress, and strain fields, as well as 
reaction forces in a solid body. 

Thermal Analysis: Steady-state or time-dependent temperature field and 
heat flux in a solid body. 

2,2.1,1 Structural Analysis 

This analysis type addresses several different structural problems, for 
example: 


