

HOW TO BUILD AND DEPLOY MACHINE LEARNING PROJECTS

Litan Ilany, Advanced Analytics

litan.ilany@intel.com

AGENDA

- Introduction
- Machine Learning: Exploration vs Solution
- CRISP-DM
- Data Flow considerations
- Other key considerations
- Q&A

INTRODUCTION - LITAN ILANY

<u>litan.ilany@intel.com</u>

- Data Scientist Leader at Intel's Advanced Analytics team.
- Owns a M.Sc. degree in Information-Systems Engineering at BGU (focused on Machine-Learning and Reinforcement-Learning)
- Married + 2, Live in Kiryat Motzkin

ADVANCED ANALYTICS TEAM

RADICAL IMPROVEMENT OF CRITICAL PROCESSES

HELP BUILDING AI COMPETITIVE PRODUCTS

BREAKTHROUGH TECHNOLOGY THAT SCALES

MACHINE LEARNING

- Statistics
- Pattern recognition
- Generalization / Inductive Inference
- Will Wilson

 @WAWilsonIV

 "What's the difference between Al and ML?"

 10:45 PM 31 Oct 2017

 4,687 Retweets 9,666 Likes

 ② ② ② ③ ④ ④ ② ②

 67 1 4.7K 9.7K

- Types of learning:
 - Supervised vs Unsupervised Learning
 - Passive vs Active & Reinforcement Learning
 - Batch vs Online Learning

ML - ALGORITHM VS SOLUTION

• "Given a data matrix..." – does not exist in real life

- Pareto Principle (80/20 rule)
 - Technical aspects
 - Business needs
 - Extreme cases

ML PROJECT - GO / NO-GO DECISION

BUSINESS FEASIBILITY

Problem definition is clear

Partner willing to invest / change

Enough ROI / impact

DATA FEASIBILITY

Data measures what they care about ("signal")

Enough accessible & connected data

Data is accurate

EXECUTION FEASIBILITY

Technology is accessible

Model can be executed in a timely manner and size

Model's I/O flow is reasonable

CRISP-DM

Cross-Industry Standard Process for Data Mining

- A structed methodology for DM projects
- Based on practical, real-world experience
- Conceived in 1996-7

CRISP-DM: BUSINESS UNDERSTANDING

- Determine business objective
- Assess situation
- Determine data mining goals and success criteria
- Determine project plan

CRISP-DM: BUSINESS UNDERSTANDING - EXAMPLE

Example: Smart CI

- Each git-push is integrated with the main repository after tests series passes
- Multi git-push (can't check one-by-one)
- Bug in code causes entire integration to fail

CRISP-DM: BUSINESS UNDERSTANDING - EXAMPLE

Example: Smart CI

- Each git-push is integrated with the main repository after tests series passes
- Multi git-push (can't check one-by-one)
- Bug in code causes entire integration to fail

CRISP-DM: BUSINESS UNDERSTANDING - EXAMPLE

- Goals and success criteria:
 - Reduce Turnaround Time (TAT)
 - At least 20% time reduction
- Project plan

CRISP-DM: DATA UNDERSTANDING

- Collect initial data
- Describe data
- Explore data
- Verify data quality

Example:

- Git-log files (unstructured data):
 - Commits numerical / binary
 - Files, Folders numerical / binary
 - Lines numerical
- Git DB (structured data):
 - Users categorical
 - Timestamps, etc.
- Historical tests results (labels)

CRISP-DM: DATA PREPARATION

Data Understanding

Data Understanding

Data Preparation

Modeling

Evaluation

- Integrate data from multi sources
- Format data
- Feature extraction
- Clean data
- Construct data
 - Derive attributes transformation
 - Reduce imbalance data
 - Fill in missing values
- Feature selection

Example:

- Generate features from log
- Generate and clean user-features
- Normalize counters
- Thousands of features remove unnecessary ones

Data balancing (if needed)

CRISP-DM: MODELING

Business Understanding Understanding

Data Preparation

Deployment Modeling

- Select modeling technique
 - Consider computer resources, computation time, number of features, business needs
- Generate test design
 - Train/Test split, Cross validation
 - Simulation (chronological order)
- Build model
- Assess model

Example:

 We'll check various ML models with various hyperparameters

 Simulation, weekly training phase

- Model assessment:
 - Which model to choose?
 - How can we measure it?

Model A

push push **Predicted \ Actual** Total failed **Passed Predicted pass** 55 18 **73 Predicted fail** 15 12 27 **Total 70** 30 100

Predicted \ Actual	push Passed	push failed	Total
Predicted pass	35	5	40
Predicted fail	35	25	60
Total	70	30	100

Measure	A	В
Accuracy	(55+12)/100 = 67%	(35+25)/100 = 60%

- Model assessment:
 - Which model to choose?
 - How can we measure it?

Model A

Predicted \ Actual	push Passed	push failed	Total
Predicted pass	55	18	73
Predicted fail	15	12	27
Total	70	30	100

Predicted \ Actual	push Passed	push failed	Total
Predicted pass	35	5	40
Predicted fail	35	25	60
Total	70	30	100

- Model assessment:
 - Which model to choose?
 - How can we measure it?

Measure	A	В
Accuracy	(55+12)/100 = 67%	(35+25)/100 = 60%
Precision	55/73 = 75%	35/40 = 87%

Model A

Predicted \ Actual	push Passed	push failed	Total
Predicted pass	55	18	73
Predicted fail	15	12	27
Total	70	30	100

Predicted \ Actual	push Passed	push failed	Total
Predicted pass	35	5	40
Predicted fail	35	25	60
Total	70	30	100

- Model assessment:
 - Which model to choose?
 - How can we measure it?

Measure	A	В
Accuracy	(55+12)/100 = 67%	(35+25)/100 = 60%
Precision	55/73 = 75%	35/40 = 87%
Recall	55/70 = 76%	35/70 = 50%

Model A

Predicted \ Actual	push Passed	push failed	Total
Predicted pass	55	18	73
Predicted fail	15	12	27
Total	70	30	100

Predicted \ Actual	push Passed	push failed	Total
Predicted pass	35	5	40
Predicted fail	35	25	60
Total	70	30	100

- Model assessment:
 - Which model to choose?
 - How can we measure it?

Measure	A	В
Accuracy	(55+12)/100 = 67%	(35+25)/100 = 60%
Precision	55/73 = 75%	35/40 = 87%
Recall	55/70 = 76%	35/70 = 50%
FPR*	18/30 = 60%	5/30 = 17%

^{*}Lower is better

Model A

Predicted \ Actual	push Passed	push failed	Total
Predicted pass	55	18	73
Predicted fail	15	12	27
Total	70	30	100

Predicted \ Actual	push Passed	push failed	Total
Predicted pass	35	5	40
Predicted fail	35	25	60
Total	70	30	100

Business ease of explanation

CRISP-DM: EVALUATION

- Evaluate results
 - In terms of business needs
- Review Process
- Determine next steps

Example:

Predicted \ Actual	push Passed	push failed
Predicted pass	TP	FP
Predicted fail	FN	TN

- TAT reduction:
 - TP = 50% reduction (X2 faster)
 - FN = 0% reduction
 - FP = -500-5000% reduction (X5-50 slower)

CRISP-DM: DEPLOYMENT

- Plan and deploy the model
- Plan monitoring and maintenance process

Example:

- Integrate with existing CI system
- Weekly automatic process that will train the model
- Weekly automatic process that will monitor the model's performance and suggest better hyper parameters (if needed)

ata 13
Reminder ©

CRISP-DM: DATA FLOW

OTHER KEY CONSIDERATIONS

- Use Git (or other version control platform)
- Automate the research process (trial-and-error)
- Use Docker containers
- TEST YOUR CODE (don't think of it as black box)
- ML Technical Debt code and data

REFERENCES

CRISP-DM (Wikipedia)

4 things DSs should learn from software engineers

Machine Learning: The High Interest Credit Card of Technical Debt

experience what's inside™