
Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17

• The program counter is a register that
always contains the memory address of the
next instruction (i.e., the instruction
following the one that is currently
executing). It is the first register displayed
in the Fixed Point Register list on the far
left of the QtSPIM display.

• The PC can be accessed/modified by jump
and branch instructions.

• In the actual screen shot above, the PC
(very top; see red circle) holds the address
0x00400064, which means that the
currently-executing MIPS instruction is at
memory location 0x00400060.

PC = 400064
EPC = 0
Cause = 0
BadVAddr = 0
Status = 3000ff10

HI = 0
LO = 0

R0 [r0] = 0
R1 [at] = 10
R2 [v0] = a
R3 [v1] = 0
R4 [a0] = 33
R5 [a1] = 7ffff8d8
R6 [a2] = 7ffff8f0
R7 [a3] = 0
R8 [t0] = 1001000f
R9 [t1] = 10
R10 [t2] = 0
R11 [t3] = 0
R12 [t4] = 0
R13 [t5] = 0
R14 [t6] = 0
R15 [t7] = 0
R16 [s0] = 0
R17 [s1] = 0
R18 [s2] = 0
R19 [s3] = 0
R20 [s4] = 0
R21 [s5] = 0
R22 [s6] = 0
R23 [s7] = 0
R24 [t8] = 0
R25 [t9] = 0
R26 [k0] = 0
R27 [k1] = 0
R28 [gp] = 10008000
R29 [sp] = 7ffff8d4
R30 [s8] = 0
R31 [ra] = 400018
 Lecture #13: Decision Support Instructions 1

The Program Counter

QtSPIM
Register
Display
(Fixed-Point
Registers)

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17

Where are the Program and Data Stored?

• Both data and text (instructions) are stored in memory.
• However, these two quantities are stored in different

areas of memory, and accessed by different data
pathways.

• The MIPS computer can address 4 Gbyte of memory,
from address 0x0000 0000 to 0xffff ffff.

• User memory is limited to locations below 0x7fff ffff.
• Text (program) storage always starts at 0x0040 0000.
• Data storage always starts at 0x1001 0000.

Lecture #13: Decision Support Instructions 2

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17

Data and Instruction Pathways

• Data and instructions enter the CPU via different
pathways. Data must enter via the register block.

• Instructions proceed directly to the instruction decoder
in the CPU.

Lecture #13: Decision Support Instructions 3

Memory Register
Block A

LU

Instructions

Data Data

Data

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 4

Jump Instructions
• The normal form of the jump instruction is: j label
• “jump” always points to a labeled memory address.
• The next instruction executed is the one at memory

location “label.” This transfer is unconditional.
Examples:
– j loop – The next instruction executed is the one labeled “loop.”
– j go – The next instruction to be executed is labeled “go.”
– j start – The next instruction executed is at the memory

location labeled “start.”
– There is NO option on jump instructions. Again, a jump is

always to a labeled location.
– Jump and branch instructions are the reason that text lines

(instructions) are labeled in a program.

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 5

Format of the Jump Instruction

• The jump instruction has its own unique format.
– During assembly, SPIM calculates the real memory address of the

destination, removes the top 4 bits, does a shift right 2, and inserts
the resulting 26 bits into the instruction for the label.

– On execution, the CPU reverses this process to create the address.
• The new instruction address is loaded into the PC.
• This address format provides a “range” of ~ 268 Mbytes.

00 0010 26-bit word address (extended by two bits via left shift)

Op Code = 0x 02 = “j”

This [26+2]-bit address is added to the upper 4 bits of the PC to
calculate the address of the next instruction to be executed.

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 6

Jump and Link (or Load)

• The form of the jal instruction (“jump and link”) is
identical to jump, except that the op code is 0x 3
(binary 00 0011).

• In the jal instruction, however, there is an additional
step:
– j go – the next instruction executed will be from the memory

location labeled “go.”
– jal go – identical to j go, plus the value of [PC]+4 → $ra ($31).

That is, the 32-bit address of the next instruction after the jal is
loaded into $ra.

– jal is used with the “jr” instruction to facilitate entering and
exiting procedures.

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 7

Jump Register (or Jump Return)

• As mentioned on the previous slide, jr is used with jal.
• jr normally employs the return address register, $ra

(=$31), but it can be used with other registers as well.
• The form of the jr instruction is different than j or jal.

jr uses the “register-register” op code, and a function
code of 8 (next slide).

• The assembly language version of the instruction is:
– jr $rs – “Unconditionally jump to instruction address [$rs].”
– jr $ra is the usual form, since jal stores the next address in $ra.
– We will not use the instruction jalr, “jump and link register.”

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 8

Format for jr Instructions

• jr has a format like the register-register instructions.
• The op code is “0” and the “rs” field is the 5-bit address of the

register containing the next instruction address. This address is
normally 31 (= $ra), since jal stores the address [PC+4] there.

• The function code is the tag denoting that this is a jump
instruction, specifically jr.

• The remaining bits are unused.

00 0000 1 1111 00 1000

Op Code indicates
“reg-reg” instruction These bits basically unused

Return address reg ($ra, = $31) function code 8 = “jr”

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 9

Use of jal/jr Together
• The uses of jal and jr are tied together.
• These instructions may be used for subroutine or

procedure calls, to provide a convenient entry to/exit
from utility software.
– jal sub – the next instruction executed is in a different code

segment, starting at memory location “sub.” The processor
stores the address of the instruction following the jal
instruction ([PC]+4) in $ra.

– At the conclusion of the called routine (starting at label “sub”),
the last instruction is jr $ra. This returns the program to its
primary flow at the instruction that followed the original jal.

• We will use jal and jr in future exercises.

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 10

Example: Jump Assembly-to-Machine Instruction

1. A program instruction is j loop. If the instruction
labeled “loop” is at text memory location 0x0040 0080,
what value (in hex) goes into the 26-bit field of the
jump instruction?

2. The 26-bit field in a jump instruction is 0x0100080.
What is the actual address the jump instruction refers
to if the top four bits of the Program Counter are
0000.

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 11

Example 1 Solution

The hex content of the field is 0x0100 020

Strip out upper 4 PC bits

Regroup

0000 0100 0000 0000 0000 1000 0000

0000 0000 0100 0000 0000 0000 1000 0000
0x 0 0 4 0 0 0 8 0

right shift 2

0000 0100 0000 0000 0000 1000 00

00 0001 0000 0000 0000 0010 0000 26-bit field
of j instruction

0x 0 1 0 0 0 2 0

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 12

Example (3)

The address = 0x0040 0200

00 0001 0000 0000 0000 1000 0000

00 0001 0000 0000 0000 1000 0000 00
Left shift 2

Regroup

0000 0100 0000 0000 0010 0000 0000
Add upper 4 bits of PC

0000 0000 0100 0000 0000 0010 0000 0000
0x 0 0 4 0 0 2 0 0

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 13

Branch Instructions

• Branch instructions (often used with jump instructions)
allow SPIM programmers to design decision-making
ability into a program.

• For that reason, they can be referred to as “program
control” instructions, since they support the ability for
a program to determine when to change operation.

• In general, a branch performs a comparison. If the
comparison is successful, the next instruction executed
is at another point in the program.

• If the desired comparison is not achieved, the program
simply executes the instruction following the branch.

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 14

Branch Uses the “Immediate” Instruction Format

• Branch instructions use the I-format (same as load/store).
• In this case, however, $rs is the register to be compared or

evaluated.
• $rt contains the standard of comparison. If an immediate

is specified (real number), $rt=$at (immediate → $at).
• The op codes for branch are usually 01 and 04-07.

Op Code $rs (Add) $rt (Dest.) Offset to be added to prog. ctr.

Defines branch

Register to which $rs is compared

Register to be
compared Offset added to current PC (±32,768)

6 bits 5 bits 5 bits 16 bits (15 bits magnitude + sign bit)

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 15

The Concept of Program Control and Branching

• The branch instructions allow decision points in the
program to assure that the program:
– Enters or exits a loop (discussed shortly);
– Determines when a repetitive calculation has reached a certain

number of interactions;
– Decides when a program has run to completion;
– Decides when to call a procedure to execute;
– Decides when a program should end.

• Branch instructions give the assembly language
programmer the key tool for designing programs which
can perform multiple, repetitive calculations.

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 16

Branch Instruction Types
• The following list is not complete, but composes a

relatively useful group of the branch instruction subset.
– Branch on equal: beq $rs, $rt, label – If [$rs]* = [$rt]*, branch

to label; otherwise execute the next instruction.
– Branch on greater than or equal zero: bgez $rs, label –

If [$rs] ≥ 0, branch to label; otherwise execute next instruction.
– Branch on greater than zero: bgtz $rs, label – If [$rs] > 0,

branch to label; otherwise execute the next instruction.
– Branch on less than or equal zero: blez $rs, label – If [$rs] ≤ 0,

branch to label; otherwise execute the next instruction.
– Branch on less than zero: bltz $rs, label – If [$rs] < 0, branch to

label; otherwise execute next instruction.

* [] = “Contents of.”

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 17

Branch Instructions (2)

– Branch on not equal: bne $rs, $rt, label – If [$rs] ≠ [$rt],
branch to label; otherwise → next instruction.

– Branch on equal zero: beqz $rs, label – If [$rs] = 0, branch to
label; otherwise → next instruction.

– Branch on greater than or equal: bge $rs, $rt, label –
If [$rs] ≥ [$rt], branch to label; otherwise → next instruction.

– Branch on greater than: bgt $rs, $rt, label – If [$rs] > [$rt],
branch to label; otherwise → next instruction.

– Branch on less than or equal: ble $rs, $rt, label – If [$rs] ≤
[$rt], branch to label; otherwise → next instruction.

– Branch on less than: blt $rs, $rt, label – If [$rs] < [$rt], branch
to label; otherwise → next instruction.

– Branch on not equal zero: bnez $rs, label – If [$rs] ≠ 0, branch
to label; otherwise → the next instruction.

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 18

Set Instructions

• The set instructions are used in decision-making functions
(often with branch instructions) within a program.

• The format for set instructions is the same as for MIPS
register-register instructions unless an immediate is
involved, in which case the format of a branch instruction
is employed.

• The set instruction list shown on the next page is not
complete, but is a good representation of types.

• In most cases, our examples will not use set instructions;
however, they can be valuable in certain cases.

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 19

Set Instructions
• Set less than: slt $rd, $rs, $rt – [$rd] =1 if [$rs] < [$rt], 0 otherwise.
• Set less than immediate: slti $rd, $rs, immediate – [$rd] = 1 if [$rs]

< immediate, 0 otherwise.
• Set equal: seq $rd, $rs, $rt – [$rd] = 1 if [$rs] = [$rt], 0 otherwise.
• Set greater than or equal: sge $rd, $rs, $rt – [$rd] = 1 if [$rs] ≥ [$rt],

0 otherwise (an immediate may be substituted for [$rt]).
• Set greater than: sgt $rd, $rs, $rt – [$rd] = 1 if [$rs] > [$rt], 0

otherwise (an immediate may be substituted for [$rt]).
• Set less than or equal: sle $rd, $rs, $rt – [$rd] = 1 if [$rs] ≤ [$rt], 0

otherwise (an immediate may be substituted for [$rt]).
• Set not equal: sne $rd, $rs, $rt – [$rd] = 1 if [$rs] ≠ [$rt], 0 otherwise

(an immediate may be substituted for [$rt]).
Definition: “set” is like “branch,” except that for a successful comparison, a 1 goes
into a destination register rather than the program branching to a different location.

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 20

The Most Useful Programming Function: The Loop

• Branch instructions enable the most important computer
function, the loop.

• Modern electronic computers have the ability to perform
computing actions repetitively, at very high speed.
– Many modern engineering and scientific problems cannot be

solved “exactly;” approximate solutions are found using iterative
calculation techniques.

– Business functions performed on computers involve repetitive
arithmetic and clerical functions, such as payroll calculations,
receivables, and taxes.

• All these functions are done with loops.

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 21

Demo Program 1: Loop Example

• The following is a simple loop program that looks for the
letter “l” in the phrase “hello world.”

• Since there are three l’s in the phrase, we know the final
result, but notice how the program is structured to:
– Set up the loop to examine the entire phrase.
– Do the comparison once in each loop iteration, using a beq.
– Exit the loop and report the results.

• The loop uses the “.asciiz” declaration. Since the phrase is
declared as null-terminated (“.asciiz”), the loop hunts for a
null (ASCII 0x00) character (using beqz) to determine
when all characters have been examined.

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17

The Loop, Step by Step
• We are going to go through the string “Hello, world!”

looking for l’s. The first thing to do is the data
declaration (which we will call “str” for string:

 .data
 str: .asciiz “Hello, world!” # asciiz declaration always put
 # in quotes.

• What do we do next? Start to write the program with a

text declaration.

Lecture #13: Decision Support Instructions 22

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17

Starting the Loop Program

 .text
main:

• What will the first instruction be?

– We have to examine every character in the string. Since we will
be in a loop, we must somehow change the address of each
letter in the string each time through the loop.

– That means we must use the “register contents plus offset”
addressing method.

– What address can we use? We remember that the address of a
string is the address of the first letter in the string.

 Lecture #13: Decision Support Instructions 23

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17

Program: First Step
 .text
main: la $t0,str # address of the H, first letter in the string, is
 # the address of “str.”

 .data
str: .asciiz “Hello, world!”

• We put the address of the string in $t0. Once it is in $t0,

we can treat it like any other number. We will see what
an advantage this is in a moment.

• What next?
• Now we can start to construct a loop.

Lecture #13: Decision Support Instructions 24

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17

Starting the Loop
 .text
main: la $t0,str # address of the H, first letter in the string, is
 # the address of “str.”

loop: lb $t1,0($t0) # We start the loop by loading the first letter.
 beqz $t1,over # Since the loop is null-terminated (.asciiz), we
 # put in a test for null (0). When we find a null,
 # we know we are at the end of the loop, so we
 # exit.
 .data
str: .asciiz “Hello, world!”

• We start the loop, but we also immediately put in a way

to get OUT of the loop.
Lecture #13: Decision Support Instructions 25

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17

Doing the “Work” of the Loop

• In the loop, what are we looking for? The letter “l.”
• The ASCII code for l is 0x6c in hex.
• Thus we test for the value 0x6c. When we find it, we

make note of it. How? We add one to a register to
effectively count each occurrence of l.

• If a letter is not l, we ignore it and simply get the next
letter to check.

• We do that by changing the address in $t0, and then
loading the next letter in $t1.

• Thus (next page):

Lecture #13: Decision Support Instructions 26

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17

Counting the “l’s”
 beq $t1,0x6c,cnt # if the character is an l, go to count
incr: addi $t0,$t0,1 # add 1 to current byte address
 j loop # get next byte to compare
cnt: addi $t2,$t2,1 # add one to count of letter l's in phrase
 j incr # go back into loop

• The five instructions above check each letter to see if it

is an l and move the loop forward.
• If the letter is an l, the count is registered by adding one

to $t2, effectively counting l’s.
• Note that whether or not we count an l, we still add one

to the address in $t0, so that when we go back through
the loop, we get the next letter in the string to test.

Lecture #13: Decision Support Instructions 27

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17

Finishing the Program
• The loop is complete: We enter it, load each letter

sequentially into $t1, and test for l’s. We exit the loop
when we encounter a null character.

• We finish the program by printing out the answer.
• We want to have an announcement of the answer

contents, so we change the data declaration a bit to add
the answer leader:

 .data
str: .asciiz "Hello, world!\n"
rept: .asciiz "The total count of the letter l is "

Lecture #13: Decision Support Instructions 28

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17

Finishing the Program (2)

• Now all we have to do is write the output sequence and
stop command.

• We will output the leader with a system call 4.
• We output the number of l’s by moving the number

from $t2 to $a0 and doing syscall 1 (remember, syscall
1 outputs the contents of $a0 as a decimal number).

• Then we use syscall 10 to stop.
• The final sequence of instructions is then (next page):

Lecture #13: Decision Support Instructions 29

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17

Finishing the Program (3)
over: la $a0,rept
 li $v0,4 # output report phrase
 syscall
 move $a0,$t2 # move total l-count to $a0 for output
 li $v0,1
 syscall # output letter total
 li $v0,10
 syscall # end program

• Our first loop program is now complete. The full

program is shown on the next slide.

Lecture #13: Decision Support Instructions 30

Lecture 13 Demo Program 1: “L Finder”
This program counts the number of l’s in “Hello, world!\n”
The number of l’s is printed on the console.

 .text
main: la $t0,str # put starting address of "hello world" into t0
loop: lb $t1,0($t0) # load byte in phrase
 beqz $t1,over # if character null, we are finished
 beq $t1,0x6c,cnt # if the character is an l, go to count
incr: addi $t0,$t0,1 # add 1 to current byte address
 j loop # get next byte to compare
cnt: addi $t2,$t2,1 # add one to count of letter l's in phrase
 j incr # go back into loop
over: la $a0,rept
 li $v0,4 # Output report phrase
 syscall
 move $a0,$t2 # move total l-count to $a0 for output
 li $v0,1
 syscall # output letter total
 li $v0,10
 syscall # end program

 .data
str: .asciiz "Hello, world!\n"
rept: .asciiz "The total count of the letter l is "

Lecture #13: Decision Support Instructions 31

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17 Lecture #13: Decision Support Instructions 32

Summary
• In the MIPS RISC architecture, program memory is only

accessed via jump and branch instructions. That is, jump
and branch instructions are the only way to modify the
program counter.

• Both j and jal unconditionally transfer program control
from one section of a program to another.

• Jal and jr allow calling a subroutine and then returning
from it to the point from which the subroutine was called.

• Branches allow the programmer to add “intelligence” to a
program. The branch instruction uses comparisons to
allow decision-making with respect to two alternatives
within a program.

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17

Program 2
• Using the li instruction, put 23, 67, and 45 into registers

$t0-$t2, respectively.
• Now, write a program that compares the numbers in

the three registers and outputs the largest. Note: this
program will not be a loop!

• Yes, you know which is larger, but the MIPS doesn’t.
Write your program so that it will compare the three
registers and output the largest number, regardless of
which register it is in.

• Check your program by changing the li instructions to
put the largest number in each of the other two
registers to check the logic of your program.

Lecture #13: Decision Support Instructions 33

Erik Jonsson School of Engineering and
Computer Science

The University of Texas at Dallas

© N. B. Dodge 8/17

Program 3
• In the data section of your program, declare an .asciiz

string: “Hello, world!\n”.*
• Now write a brief program to count the lower-case letters

in the phrase. Hint: the hex values of the ASCII codes
for a-z are 0x61-0x7a.

• When you have completed the count, output that number
to the console.

• How do you end your loop? Remember, the .asciiz string
of letters is null-terminated!

• If you wish, you can output an answer leader such as
“The number of lower case letters in Hello, world! is:”

Lecture #13: Decision Support Instructions 35

Remember that “\n” is the symbol for CR/LF in a SPIM program.

	The Program Counter
	Where are the Program and Data Stored?
	Data and Instruction Pathways
	Jump Instructions
	Format of the Jump Instruction
	Jump and Link (or Load)
	Jump Register (or Jump Return)
	Format for jr Instructions
	Use of jal/jr Together
	Example: Jump Assembly-to-Machine Instruction
	Example 1 Solution
	Example (3)
	Branch Instructions
	Branch Uses the “Immediate” Instruction Format
	The Concept of Program Control and Branching
	Branch Instruction Types
	Branch Instructions (2)
	Set Instructions
	Set Instructions
	The Most Useful Programming Function: The Loop
	Demo Program 1: Loop Example
	The Loop, Step by Step
	Starting the Loop Program
	Program: First Step
	Starting the Loop
	Doing the “Work” of the Loop
	Counting the “l’s”
	Finishing the Program
	Finishing the Program (2)
	Finishing the Program (3)
	Slide Number 31
	Summary
	Program 2
	Slide Number 34
	Program 3
	Slide Number 36

