

DEGREE PROJECT IN INFORMATION AND
COMMUNICATION TECHNOLOGY,
SECOND CYCLE, 30 CREDITS
STOCKHOLM, SWEDEN 2020

Evaluating the Performance and
Capabilities of Popular Android
Mobile Application Testing
Automation Frameworks in Agile
/ DevOps Environment

KISHORE BAKTHA

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Evaluating the Performance and
Capabilities of Popular Android Mobile

Application Testing Automation
Frameworks in Agile/DevOps

Environment

Kishore Baktha

08/17/2020

Master’s Thesis

Examiner
Mihhail Matskin

Academic Adviser

Karl Meinke

Industrial Adviser
Milena Jakovchevska

KTH Royal Institute of Technology
School of Electrical Engineering and Computer Science (EECS)
Department of ICT
SE-100 44 Stockholm, Sweden

ii

Abstract

The number of mobile applications has increased tremendously over the last decade, thereby also
having increased the importance of mobile application testing. Testing is a very crucial process in the
development of a mobile application to ensure reliability and proper functionality. In an Agile/DevOps
environment, test automation is an integral part in order to support the continuous integration and
continuous delivery/deployment principle. There is a plethora of mobile application testing automation
frameworks available in the market today. Android testing frameworks were chosen for this study
because of the prevalence of Android applications in the market today. The focus of this study is the
comparison of the most popular mobile application testing automation frameworks in terms of
performance and capabilities in an Agile/DevOps environment. In order to achieve this, firstly, the three
most popular mobile application testing automation frameworks to be used for the study were
identified. Secondly, the Key Performance Indicators and capabilities to be used for comparison of the
frameworks were identified. Then, test cases in a complex mobile application were designed for
analysing the frameworks based on the criteria gathered. Finally, the test cases were integrated in a
Continuous Integration/ Continuous Delivery pipeline to gather results and perform a more detailed
comparison in an Agile/DevOps environment. From this study, Espresso turned out to be the best
framework in terms of KPI analysed beating the other frameworks in all the KPIs, while Robotium was
second best followed by Appium. But on the other hand, Appium was the best framework in terms of
capabilities by having ability to execute the maximum number of capabilities analysed followed by
Robotium while Espresso was the worst framework in this criteria.

Keywords

Mobile Applications, Mobile Application Testing Automation Frameworks, Agile/DevOps, Key
Performance Indicators, Espresso, Appium, Robotium

iii

Sammanfattning

Antalet mobilapplikationer har ökat enormt under det senaste decenniet och därmed har även vikten av
mobilapplikationstest ökat. Testning är en mycket viktig process i utvecklingen av en mobilapplikation
för att säkerställa tillförlitlighet och korrekt funktionalitet. I en Agile/DevOps miljö är testautomation
en viktig del för att stödja principen av kontinuerlig integration och kontinuerlig leverans/driftsättning.
Det finns en mängd ramverk för automatiserad testning av mobilapplikationer på marknaden idag.
Testramverk för Android valdes för denna studie på grund av utbredningen av Android-applikationer
på marknaden idag. Fokus för denna studie är jämförelsen av de mest populära automatiserade
testramverk för mobilapplikationer med avseende på prestanda och lämplighet i en Agile/DevOps
miljö. För att uppnå detta, identifierades först de tre mest populära automatiserade testramverk för
mobilapplikationer som skulle användas för studien. Sedan identifierades de viktigaste
resultatindikatorerna och kapaciteterna som skulle användas för att jämföra ramverken. Därefter
designades testfall i en komplex mobilapplikation för att analysera ramverken baserat på de bestämda
kriterierna. Slutligen integrerades testfallen i en pipeline för kontinuerlig integration /kontinuerlig
leverans för att samla resultat och utföra en mer detaljerad jämförelse i en Agile/DevOps miljö. Från
denna studie visade sig Espresso vara det bästa ramverket när det gäller KPI-analys, som slog de andra
ramarna i alla KPI: er, medan Robotium var näst bäst följt av Appium. Men å andra sidan var Appium
det bästa ramverket med avseende på kapacitet. Den hade förmågan att utföra det maximala antalet
kapacitet som analyserades, följt av Robotium medan Espresso var det sämsta ramverket i dessa
kriterier.

Nyckelord

Mobilapplikationer, Mobilapplikation Testar Automatiseringsramar, Agile/DevOps, Viktiga
Resultatindikatorer, Espresso, Appium, Robotium

iv

Acknowledgements

I would like to thank the company Truecaller for giving me the freedom to work on this thesis as well as
all my colleagues for their guidance whenever I got stuck during the implementation of this study.

I would like to thank my industrial adviser Milena Jakovchevska for her constant support, motivation
and guidance throughout the completion of this project. I would also like to thank her for giving me the
opportunity to work on this thesis as it was her who had this idea in mind and let me work on it.

I would also like to thank my thesis supervisor Karl Meinke for the informative feedback throughout
this project by giving me great ideas on how to work on this project and making this project as best as
it could be.

I would like to thank my examiner Mihhail Matskin for agreeing to grade this study.

Finally, thanks to my family for everything and words alone cannot explain how grateful I am to have
you. Last, thanks to the Almighty who always makes me believe, “there is a light at the end of the tunnel”.

Stockholm, August 2020
Kishore Baktha

v

Table of Contents
Abstract .. ii

Keywords .. ii

Sammanfattning ... iii

Nyckelord ... iii

Acknowledgements ... iv

List of Figures ... viii

List of Tables .. ix

List of acronyms and abbreviations ... x

1 Introduction ... 1

1.1 Background .. 1

1.2 Problem Statement .. 1

1.3 Purpose ... 2

1.4 Goals ... 2

1.5 Research Methodology ... 2

1.6 Ethics and Sustainability ... 2

1.7 Delimitations .. 3

1.8 Structure of the thesis .. 3

2 Background ... 4

2.1 Background Technology .. 4
2.1.1 Types of Testing ... 4
2.1.2 Android App Development .. 4
2.1.3 Mobile Application Testing .. 5
2.1.4 Mobile Application GUI Testing Automation ... 5
2.1.5 Agile/ DevOps environment .. 6

2.2 Related Work .. 6
2.2.1 Previous Study on Mobile Application Testing Automation Frameworks (RQ 1.1) 6
2.2.2 Detailed Description of Common Mobile Application Testing Automation Frameworks 7
2.2.3 Popularity of Mobile Application Testing Automation Frameworks (RQ.1.2) 8
2.2.4 Architecture of the most popular frameworks .. 9
2.2.5 KPIs for Mobile Application Testing Automation Frameworks (RQ 1.3) .. 11
2.2.6 Challenges of Integrating Mobile Application Testing Automation Frameworks to Agile/DevOps
environment(RQ 1.4) .. 13

3. Research Methodology ... 14

3.1 Research Process ... 14

3.2 Research Questions .. 14
3.2.1 Research Questions Part One .. 15
3.2.2 Research Questions Part Two .. 15

3.3 Research Paradigm ... 16
3.3.1 Measurement of the KPIs ... 16
3.3.2 Evaluating the capabilities .. 16

vi

3.3 Data Collection ... 17

3.4 Experimental Design ... 17
3.4.1 General Agile/DevOps Environment setup tools ... 17
3.4.2 CI/CD Pipeline setup tools ... 17
3.4.3 Test Environment setup .. 17
3.4.4 Hardware/Software used .. 18

3.5 Assessing Reliability and Validity of Data Collected .. 18
3.5.1 Reliability ... 18
3.5.2 Validity ... 18

3.6 Planned Data Analysis .. 18

4. Methods ... 19

4.1 Selection of Mobile Application ... 19

4.2 Selection of test cases ... 19

4.3 Implementation of KPI measurements ... 21

4.4 Implementation of the CI/CD pipeline .. 23
4.4.1 Overcoming challenges of integration of mobile application testing automation frameworks into
the pipeline .. 24

5. Results and Analysis ... 27

5.1 Measurement of KPIs .. 27
5.1.1 Execution Time .. 27
5.1.2 Maintainability .. 33
5.1.3 Flakiness .. 34
5.1.4 Reliability ... 35
5.1.5 Fragmentation ... 36
5.1.6 Identification of defects .. 37
5.1.7 Battery Usage .. 37

5.2 Evaluating Capabilities ... 37

6. Discussion .. 40

6.1 Measurement of KPIs (RQ 2.1) .. 40
6.1.1 Execution Time .. 40
6.1.2 Maintainability .. 40
6.1.3 Flakiness .. 41
6.1.4 Reliability ... 42
6.1.5 Fragmentation ... 44
6.1.6 Identification of defects .. 44
6.1.7 Battery Usage .. 45
6.1.8 Ranking of frameworks .. 45

6.2 Evaluating Capabilities (RQ 2.2) ... 46

7. Conclusions and Future work ... 50

7.1 Conclusions ... 50

7.2 Limitations of this study ... 51

7.3 Future work .. 51

7.4 Reflections .. 51

Bibliography ... 52

vii

Appendix A: Detailed Steps of Test Cases ... 54

Appendix B: Code Snippets of execution of capabilities in different
frameworks ... 59

viii

List of Figures

Figure 2.1: Relationship between continuous integration, delivery and deployment 6
Figure 2.2: Number of Google searches in terms of relative percentage 8
Figure 2.3: Appium architecture .. 10
Figure 2.4: Instrumentation test on Android .. 10

Figure 3.1: Research Methodology ... 14

Figure 4.1: Extent Report of Passed Test ... 21
Figure 4.2: Extent Report of Failed Test ... 22
Figure 4.3: CLOC tool output example ... 22
Figure 4.4: Extent Report Dashboard ... 22
Figure 4.5: Blue Ocean view of the Pipeline ... 26

Figure 5.1: Boxplots of results of execution time in Samsung device 30
Figure 5.2: Boxplots of results of execution time in Honor device 33

Figure 6.1: Number of capabilities met by the selected frameworks 49

ix

List of Tables

Table 2.1: Mobile Application Testing Automation frameworks .. 8
Table 2.2: Tags and Count of Questions on Stack overflow in March 2020 9

Table 3.1: Hardware/Software Versions ... 18

Table 4.1: AQuA tests selected .. 19
Table 4.2: Test cases implemented on mobile application ... 20

Table 5.1: Execution time of different test cases in Samsung device 27
Table 5.2: Execution time of different test cases in Honor device 30
Table 5.3: Change in LOC per framework .. 33
Table 5.4: Total LOC per framework ... 34
Table 5.5: Number of Wait statements per framework ... 34
Table 5.6: Number of failures divided by total number of test runs in T13 per framework .. 35
Table 5.7: Number of failed tests divided by total number of tests per framework 35
Table 5.8: Number of sleep statements and alternate executions in Espresso framework 36
Table 5.9: Number of sleep statements and alternate executions in Robotium framework 36
Table 5.10: Number of sleep statements and alternate executions in Appium framework . 36
Table 5.11: Identification of defects by the frameworks .. 37
Table 5.12: Average battery usage with number of successful runs in parenthesis 37

x

List of acronyms and abbreviations

API Application Programming Interface

APK Android Package

AUT Application Under Test

CD Continuous Delivery

CI Continuous Integration

CIViT Continuous Integration Visualization
Technique

CLOC Count Lines of Code

CPU Central Processing Unit

CRTS Continuous Regression Test Selection

CTSP Continuous Test Suite Prioritization

DevOps Development and Operations

DIA Distance to Ideal Alternative

GUI Graphical User Interface

HTML Hypertext Markup Language

KPI Key Performance Indicator

LOC Lines Of Code

MADM Multiple Attribute Decision Making

xi

mAh Milliampere Hour

OCR Optical Character Recognition

OS Operating System

RQ Research Question

SDK Software Development Kit

SSH Secure Shell

XML Extensible Markup Language

UI User Interface

USB Universal Serial Bus

VCS Version Control Systems

VoIP Voice Over Internet Protocol

1

1 Introduction

This chapter introduces the problem that this thesis addresses, along with the context of the problem
and the goals of this thesis project. Also, the structure of the thesis is outlined along with the research
questions to be answered.

1.1 Background

Since the introduction of smartphones, there has been a steady growth in the number of mobile
applications. Almost every individual in the world has a smartphone today to serve daily purposes.
Mobile apps can be used for various purposes such as finding the location of the user, listening to music,
sending messages, etc.

The most commonly used OS for smartphones in the world to this date is Android. Google Play store is
the primary distributor for Android apps. It is estimated that there are currently 2.9 million apps in the
Google Play Store [1].

Almost every day, an Android app is released to the Google Play Store or is updated. While there is
constant demand for developing new apps, there is also an equal necessity for the stability and reliability
of the app. If there is less importance given to testing than with development, the app may become
unresponsive or crash regularly. Thus, major mobile app companies now have testers who are
responsible for testing the functionality of the mobile app. This type of testing is called manual testing
where the testers test each feature of the app manually by hand and verify whether the required
functionality is satisfied.

Mobile Application testing automation is the practice of using test automation frameworks to automate
testing certain functionalities of the mobile application. The frameworks are responsible for test case
generation, execution and then verification. Regression testing is a type of testing wherein the
functional and non-functional tests are re-executed in order to verify that the previously developed
software still works as expected after a change. Implementing test automation will allow the
organizations to run regression testing without wasting the effort of humans to verify the same features
again when they can focus more on verifying the latest developed features.

Many software organizations have complex and evolving requirements due to which the traditional
software methodology of practicing the waterfall model cannot be used anymore owing to the strong
rigidity of the model. Thus, the organizations are moving to Agile/DevOps environment for faster
software development. Agile focuses on iterative and incremental development of the software while
DevOps focuses on incremental deployment of the software.

There have been many studies that have focused on comparison of mobile application testing
automation frameworks. In [2], information about different test automation frameworks were
mentioned in terms of difficulties, the operating system supported and testing types. In [3], the authors
have done research about the existing studies that are related to testing of Android applications. They
have found that there is lack of research of comparison of test automation frameworks with respect to
performance and most of the studies that mention comparison have not been done on an industry
setting and therefore it would be difficult to decide which framework to actually use in the practical
world setting. Moreover, the authors in [3] have also found that there are very few studies that mention
the software testing metrics that can be used to evaluate the different mobile application testing
automation frameworks.

1.2 Problem Statement

Performing regression testing manually in an Agile/DevOps environment can be very tedious and time-
consuming owing to the continuous change in the software being developed leading to the requirement
of testing the app from scratch for every new feature being developed. Thus, it is necessary to implement
test automation to address the rapid change of software. There are certain challenges that needs to be
addressed while implementing test automation in Agile/DevOps environment. A major factor that
affects the performance of test automation is the selection of test automation frameworks. Many
software companies have developed different frameworks with different capabilities and

2

characteristics. The problem is to address the challenges of mobile application testing automation in an
Agile/DevOps environment and then implement and perform a comparison of the popular mobile
application testing automation frameworks in such an environment.

1.3 Purpose

The process of performing regression test manually has become very tedious and time-consuming due
to the increase in practice of Agile/DevOps environment, where new features are integrated to the
mobile application every day. A lot of time and resources is wasted in verifying whether the old features
work again and again. Thus, the purpose of this project is to conduct research on mobile test automation
and it’s usage in an agile/DevOps environment to reduce both the cost and time of manual testing. The
study is performed using the most popular test automation frameworks on a complex mobile
application currently in the market to get more accurate results.

1.4 Goals

The goal of this project is to perform comparison of popular mobile application testing automation
frameworks in an Agile/DevOps environment. This has been divided into the following four sub-goals:

1) To identify the KPIs to be used for performing comparison among the frameworks.
2) To identify the mobile application testing automation frameworks in market today and select

the most popular ones for comparison.
3) To identify the challenges of integrating mobile application testing automation frameworks in

Agile/DevOps environment and propose mechanisms to address them.
4) To integrate the most popular mobile application testing automation frameworks into

Agile/DevOps environment and perform comparison.

1.5 Research Methodology

The research methodology used here is a Quantitative Research as it involves experiments of collecting
data, measuring variables and falsify or validate hypothesis or thesis. In this study, the quantitative
research is observing the values of KPI metrics obtained in different frameworks and then defining a
metric whether the value obtained ranks the framework higher or lower compared to other frameworks.

As a research method, we believe that experimental is more suitable for investigating the variables and
evaluating the performance of different test automation frameworks. This method is implemented by
keeping one or more variables constant and then manipulating the other variables to observe how the
changes affect the performance of the mobile application under test.

Along with the quantitative methods, we will use deductive approach which involves testing theories
with the help of large data sets. An experimental strategy will also be used with the help of statistics to
compare the performance of test automation frameworks. Exploratory data analysis will be conducted
using the data sets gathered to study and compare different frameworks and come to a conclusion on
which framework is better than the other.

In order to qualify the results of this project, the experiment will be conducted multiple times using
different test cases to perform a suitable comparison between the different frameworks.

1.6 Ethics and Sustainability

During the execution of the entire research project, only internal phone numbers were used. The data
was collected purely from the measurements used in the code such as the execution time and the report
generation frameworks. The data collected is confidential and is not leaked out in any manner to third
party entities. It is kept by the company - Truecaller, where this project was conducted in. The data will
be kept as long as the results can be used in any matter to further enhance the project carried out.

No participants were involved in this research and no user data was collected in any manner. Efforts
were taken to preserve the power usage by using the mobile devices and the computer connected to this
experiment only when needed.

3

1.7 Delimitations

The project compares three of the most popular mobile application testing automation frameworks. It
can be extended in the future for comparing more mobile application testing automation frameworks.
The test cases to be implemented in this project are carried out on one complex mobile application and
can be extended to include more complex mobile applications.

1.8 Structure of the thesis

 The thesis is structured as follows:

• In chapter 2, a background of technology used – Types of Testing, Android App Development,
Mobile Application Testing, Mobile Application GUI Testing Automation and Agile/DevOps
environment are mentioned. Also, the literature review conducted in this study is presented.

• In chapter 3, the research methodology used is discussed along with the setting up of the test
environment.

• In chapter 4, the methods used for conducting this study are elaborated with the
implementation of the KPIs, implementation of the CI/CD pipeline and addressing the
challenges of integrating mobile application testing automation frameworks into the pipeline.

• In chapter 5, the results from the test runs along with preliminary analysis is presented.

• In chapter 6, discussion is done based on the results obtained from the test runs.

• In chapter 7, the conclusions are presented along with limitations and future work.

4

2 Background

This chapter gives a summary of the overall background information relevant to this thesis project.

2.1 Background Technology

2.1.1 Types of Testing

The different types of testing that are relevant to this study are:

1. Black-Box Testing – This is a type of testing where the tester does not need to have knowledge
about the internal design/structure of the project being tested [4]. The tester does not need to
know the source code and testing is done based on inputs given to the system which acts like a
black box. The general process in black-box testing is that the tester is given a set of requirement
specifications. This is converted to a set of test specifications and then the system is tested by
giving inputs and verifying whether the output is the expected result or not. It can be used to
find errors such as Interface errors, Behaviour errors or Termination Errors. The main
advantage is that the tester works independently of the application programmer and does not
need to have knowledge about how the software is implemented. The main drawback is that
only a small set of possible inputs can be used for testing and different program paths might be
left untested.

2. White-Box Testing - This is a type of testing that takes into account the internal structure of the
system being tested. The design of the test cases is based on the implementation of the software
entity [4]. This type of testing is often done by the developer of the code but sometimes could
also be done by the tester who has access to the source code. The main goal is to generate inputs
for testing such that all the execution paths in the program are traversed. It helps in the
detection of logical errors in the code. The main advantage is that the entire code used for
software development can be tested for errors and also checked whether proper code style is
followed. The main drawback is that it adds additional complexity to testing because the tester
needs to have knowledge of the system being tested.

3. Gray-Box Testing – This is a type of testing used to test the system with partial knowledge of
the internal structure of the system. It can be used to identify defects due to improper code
structure or improper functioning of the system. It gives the possibility of testing the
presentation layer of the system as well as the code. The process of testing is similar to that of
black-box testing with additional inputs covering more program paths. The main advantage is
that it provides the combined benefits of both black-box testing and white-box testing. The
main drawback is that there is a possibility of duplication of test cases by the tester and the
programmer.

4. Functional Testing – It can be described as black-box testing of individual components of the
system to test each and every function for ensuring their proper behaviour. It involves
identifying the program’s features and variables used by the functions and then test the
behaviour of the functions. Each function is initially tested with a small set of inputs which are
then expanded as much as possible. The main purpose is to check the functionality as well as
usability of the application. It is also useful for checking any error conditions and whether
proper error messages are displayed.

2.1.2 Android App Development

Android is one of the most commonly used OS of a mobile device. Android app development refers to
the process of creating mobile apps that will be running on the Android platform.

The most common components of Android apps are [5]:

1. Activities - They are used to build the UI of the mobile application. They are primarily the
different screens observed and the design of each screen is represented by a XML file.

2. Services - These are basically components that run without the UI and are responsible for
performing functions such as updating the data source, triggering notifications, etc. Normally,
they execute in the background.

5

3. Intents - They are basically used while moving across different screens and also for transferring
data.

4. Broadcast Receivers - They are responsible for performing some action when a specific event
takes place. For example, they could be used for sending text messages at specific actions.

5. Content Providers - They are primarily used to share data across application boundaries by
allowing other applications to read current application’s data and vice-versa.

The app is run on the mobile device with the help of APK. It contains all the required components for
running a mobile app.

2.1.3 Mobile Application Testing

Mobile Application testing refers to the process of testing the quality of the mobile app with respect to
identifying defects in order to meet user requirements and improve user satisfaction and experience.
There are several factors specific to mobile applications that need to be kept in mind while testing
them. They are [6]:

1. Mobile Connectivity - It is one of the most crucial characteristics of a mobile application. The
mobile application may connect to a network that might vary in speed, security and reliability.
The mobile application’s correct functioning may strongly depend on the type of network
especially when the data needs to be fetched from a network resource.

2. Limited Resources - The limited resources available to a mobile application may affect the
functionality due to performance degradation and while testing, this scenario needs to be taken
into account.

3. Autonomy - This basically refers to the energy consumption in a mobile device which may vary
in different devices depending on the battery capability. Hence, while testing a mobile
application, the energy consumption of the application in the device should also be evaluated.

4. Context Awareness - Mobile apps may rely heavily on sensed data such as noise, temperature,
etc. The sensors in the devices may produce different outputs depending on the environment
conditions. Testing should be done in as many environments as possible.

5. Touch Screens – These are the main input source for mobile applications. Hence, it is necessary
to have testing techniques to test the functioning of the touch screen in different scenarios.

2.1.4 Mobile Application GUI Testing Automation

Mobile Application GUI testing automation is the process by which the mobile application testing
automation framework executes the testing by automatically performing certain functionalities based
on the test suite written by the user and then finally verifying whether the result obtained is the same
as the expected result. The implementation of the functionalities is done by the test automation
framework selected by the user. The expected behaviour of the system is validated through execution of
the test cases.

The test cases can be run on either the emulator or a real mobile device but running the test case in a
real device is preferable, as emulators are not actual devices and the actual test results may differ if run
in an actual device due to various factors such as context awareness as discussed above.

Different test automation frameworks will have different mechanisms to run the test suites but the end
result obtained is the same for all the frameworks. The user does not manually have to implement the
steps in test case and has to only check whether the test cases have passed or failed. If the test case has
failed, the user can observe the reason through different techniques such as screenshots or logging and
then report the bug to the concerned authority.

The main goal of GUI testing is to ensure correct behaviour and state of the GUI [7]. The verification of
the GUI testing can be done by bitmap comparison, using an API or by optical character recognition.
There are several challenges associated with GUI testing. There could be several states of the GUI and
it would be impossible to test all of them as the user can navigate through several paths. The event-
driven nature of GUI makes GUI applications non-deterministic and it might be highly error-prone [7].
The tests might also fail even though the state of the application is correct due to external factors such
as notifications in the mobile device.

6

2.1.5 Agile/ DevOps environment

The rapid change in requirements of the software and the demand for faster development and
deployment of the software have made organizations switch to Agile/DevOps environment.

Agile emphasizes continuous integration (CI) principles. CI involves the use of CI servers such as
Jenkins to automate the build process. The developer pushes the new code to the CI server using a VCS
such as Git after testing the code locally. The CI server now merges the new code with the latest version
on the server [8]. If there are conflicts, then the developer has to resolve them before pushing merging
the code. This process can be repeated many times during the day by the same developer or different
developers working in an organization.

While Agile focuses on automating the development process, DevOps goes a step further and also
focuses on automating the release process. It emphasizes the CD principle. CD involves the design of
infrastructure for automating the deployment and release of the software once the software is integrated
to the CI server. It is up to the users to decide the frequency of the release. CD can be used as Continuous
Delivery or Continuous Deployment. The difference is that in Continuous Delivery, the process of
releasing the latest version of the app into production is carried out manually while in Continuous
Deployment, the process of release is automated. Continuous Delivery can be used in all kinds of
software organizations while Continuous Deployment may be suitable only for certain types of
organizations.

Figure 2.1: Relationship between continuous integration, delivery and deployment [9]

Organizations that follow both Agile and DevOps generally make use of the CI/CD pipeline to integrate
both practices into their software lifecycle.

2.2 Related Work

In this section, the literature review is presented which consists of answering part one of the research
questions.

2.2.1 Previous Study on Mobile Application Testing Automation Frameworks (RQ 1.1)

Since the performance of test automation strongly depends on the frameworks selected, it is imperative
to select the right framework based on the features and requirements of the app to achieve the best
performance.

There are several papers that have been published that mention mobile application testing automation
frameworks. In [10], three frameworks - Appium, Espresso and Calabash were mentioned as the most
commonly used frameworks for functional UI testing. Calabash was found to be the best one followed
by Espresso and then Appium. The result was based on execution time and element inspection mainly
for performance evaluation. The DIA algorithm which is part of the Multiple Attribute Decision Making
(MADM) aims to select the best alternative while ensuring no ranking abnormalities [10] and was used
for performance evaluation in the above research paper.

7

Appium, Robotium, UiAutomator were the frameworks mentioned as the most used and were
compared in [11]. Appium was found to be able to handle different functional testing scenarios such as
switching network mode, handling interruptions, opening other applications, etc. UiAutomator
similarly can handle all mentioned scenarios but it cannot handle opening other applications. Robotium
was found to handle them partly. In terms of execution, UI Automator was found to have least execution
time.

In another study [12], many frameworks, but mainly - Appium, Robotium, MonkeyRunner and
Calabash were discussed. Basic information about frameworks was given with Appium shown to have
more functionality such as support for built-in applications such as camera, calendar,
phone. MonkeyRunner seems to be available for functional testing but writing different test cases for
every device is not a good option considering the plethora of devices in Android. Types of testing such
as Unit Testing, Integration and Security was discussed along with the challenges which test automation
frameworks have for supporting them.

Espresso and Eye-Automate frameworks were compared in [13]. While comparing the frameworks, it
was stated, based on a study of survey of participants involved, that Espresso involved less failures due
to direct testing of UI components and also Espresso was able to test at a lower level than Eye-Automate.
In paper [14], many frameworks were mentioned with Espresso, MonkeyRunner and Robotium quite
popular. The authors have performed a case study of automation functional testing in mobile
applications and have found out that MonkeyRunner is used in a majority of studies for comparison as
it can be used without almost no configuration effort.

Apart from research papers, there were also some blogs studied that mentioned mobile application
testing automation frameworks. Appium, Espresso, Calabash, Selendroid and Robotium were
mentioned in [15]. Appium was shown to be a very popular framework with the capability to support
cross-platform (Android and iOS). Espresso was mentioned as a widely used framework with the
capability of record and playback feature. In [16], Espresso, UIAutomator, Appium were studied and
different pros and cons of each framework were given. Appium had an advantage of being a cross-
language framework but the drawback is that execution of test cases is slow. Espresso can execute test
cases very quickly but test cases can only be written in Java or Kotlin. UiAutomator offers interaction
with system components but there is no support for web elements.

2.2.2 Detailed Description of Common Mobile Application Testing Automation Frameworks

Appium - This was found to be studied in most of the papers and blogs. Appium is very similar to
Selendroid used for the mobile web application test automation and makes use of web drivers. It is a
black-box testing framework and therefore, the testers need not to have access to the source code of the
mobile application while performing test automation. It makes use of the inbuilt UiAutomator
framework for the Android platform. It can test any type of mobile application - mobile, web and hybrid.
It is open-source and provides cross-platform and cross-language capability (can be written in many
coding languages such as Java, Python, Ruby). The minimum Android SDK version required is 16.

Espresso - This is a framework provided by Google that is mainly used for functional UI testing of the
AUT. It requires the knowledge and access to the source code to automate test cases. The testing code
and the source code are kept in the same place. The framework has the ability to identify elements used
in the application directly thereby resulting in faster execution of test cases. It has a dependency on
Hamcrest library and uses matchers from it for finding and performing some action on elements [16].

Robotium - This framework can be used for writing UI functional tests. It can also only be used to
navigate inside components in an AUT like Espresso as it strongly depends on the instrumentation
framework [17]. It supports gray-box testing of the Android apps which is a combination of black-box
and white-box testing. It is open-source with a dedicated developer community. It supports both native
and hybrid mobile applications.

MonkeyRunner - This can be used to test a mobile application at different levels, such as function or
framework as well as unit test cases [12]. It has features to allow the multiple test suites to run in
multiple devices simultaneously. It is supported by Google and is used for sending inputs to the AUT
and taking screenshots. It can be used for testing at a lower level than Espresso and can run on any
Android version. It is a black-box testing framework.

8

Calabash - This is a cross-platform testing framework having support for both native and hybrid
mobile applications. It is mainly used with the cucumber framework to execute test cases and supports
many gestures and assertions [17]. It is a black-box testing framework and supports multiple coding
languages - Java, Ruby, .NET and Flex.

The Table 2.1 summarizes the above frameworks based on different categories.

Table 2.1: Mobile Application Testing Automation frameworks

Framework Type of Testing
(black, white, gray)

Coding Language Platform Support
(Native, Hybrid,
Web)

Appium Black Java, C#, Python,
Ruby, JavaScript

Native, Hybrid, Web

Espresso White Java, Kotlin Native

Robotium Gray Java Native, Hybrid
MonkeyRunner Black Jython(Python using

Java)
Native

Calabash Black Java,Rudy,.NET, Flex Native, Hybrid

2.2.3 Popularity of Mobile Application Testing Automation Frameworks (RQ.1.2)

Though mobile application testing automation frameworks have been discussed extensively in many
papers, there have been no papers found by the author that discusses the popularity of these
frameworks. Thus, in order to get information about the current most popular frameworks, Google
Trends [18] which gives information about the relative Google searches and Stack overflow [19] which
is a website where developers post and answer questions were used.

2.2.3.1 Popularity based on Google Trends

Google is one of the most used platforms to search for any information. Through the use of Google
Trends website, it is possible to get information about the relative number of searches done by users
all over the world on particular terms. It also allows one to perform comparison among different terms
and the results are generated in the form of graphs.

In order to get the popularity of different mobile application testing automation frameworks, the
common mentioned test automation frameworks in different papers were entered as terms in Google
Trends website. Based on Table 2.1, the five commonly mentioned test automation frameworks were
used and the keywords were the framework name appended with “android” in order to get more
accurate results.

Figure 2.2: Number of Google searches in terms of relative percentage

9

Based on Figure 2.2, it can be observed that Appium seems to be the current most popular framework
followed by Espresso, in terms of Google searches. The third place is very close among the frameworks
Robotium, MonkeyRunner and Calabash.

2.2.3.2 Popularity based on Stack overflow

Stack overflow is one of the most commonly used websites for answering any software development
questions. It is widely used by developers around the world almost every day. To obtain the most
popular frameworks, the framework names were passed as tags and a number of questions in Stack
overflow having the same tag name were observed. The Stack overflow website dataset was obtained
through the data explorer site called stackExchange [20]. The framework names were passed as tag
parameters in the query to obtain the result.

Table 2.2: Tags and Count of Questions on Stack overflow in March 2020

Tag Name Count of Questions
Appium 6031
Android-espresso 2831
Robotium 1007
Monkeyrunner 592
Calabash 471

Based on the Table above, it can be observed that Appium, Espresso and Robotium are currently the
most popular frameworks in terms of most questions asked in Stack overflow followed by
Monkeyrunner and Calabash.

The scope of this thesis project will be the comparison of the three most popular frameworks – Espresso,
Appium and Robotium.

2.2.4 Architecture of the most popular frameworks

The architectures of the three most popular frameworks – Appium, Espresso and Robotium are
presented below.

Appium

To execute test cases using Appium, it is required that the app is either already installed in the device
or the path to the APK can be provided when the Appium server is started where the installation of the
app takes place before the test cases are run. In the case of Android, Appium uses UiAutomator or
Selendroid in the background to execute the test cases in the device.

Appium follows a client-server architecture. Initially, a web server has to be started on a specific port
that can listen to client connections. A client can connect to the server using the port and then it can
send commands to the server. Communication between the client and server is in the form of response
and requests. The client sends requests for performing some kind of automation to the server. The
server then processes the requests and responds with the test result or log files.

The communication between client and server takes place within a session that is initiated by the client.
The client is also required to send a set of JSON objects called “Desired Capabilities” to indicate different
settings under which the session has to be started such as the ‘platformName’ . The main reason for this
is to allow the framework to distinguish between the platforms – Android and iOS since it works
differently on both the platforms. The session communication takes place with the help of JSON wire
protocol. This protocol is a set of standardised endpoints that the client is exposed to for allowing the
webdriver to establish connection between the client and server for performing automation [21].

The Appium server is written in Node.js. The execution of Appium in the Android device can be
summarized in Figure 2.3. The Appium client (using libraries) first connects with the Appium server
using JSON wire protocol for communication. The Appium server creates a session and verifying the
“Desired Capabilities”, connects with the corresponding vendor-specific frameworks like UiAutomator.

10

The UiAutomator now communicates with bootstrap.jar that is running in the emulator or real device.
The bootstrap.jar plays the role of TCP server which can be used to send the test command to perform
an action on the Android device using UiAutomator.

Figure 2.3: Appium architecture [21]

During the execution of the tests, an instance of AndroidDriver is initialized which is used to
communicate with the device. The instance can be used to fetch objects from the device and interact
with them for performing various actions. For example, to click a button , the command used is:

driver.findElementById("com.example.debug:id/button_reject_call").click();

Espresso

Espresso can be imported as an library to the existing Android project. It uses AndroidJUnitRunner
which is basically used for running Junit test cases. The library is responsible for installing the AUT to
the connected device or emulator and also loading and running the test package. The code written for
the test cases is directly included in the code of the application and hence they can access all the
elements and corresponding classes directly. It is based on the instrumentation framework so the test
application runs in the same device as the AUT.

Figure 2.4: Instrumentation test on Android [22]

11

Espresso provides automatic synchronization of test actions with the UI of the AUT. It detects when the
main thread is idle to run the tests at the appropriate time. This improves the reliability of the test as
only the main thread can do any updates to the UI widgets and therefore, Espresso makes sure the
application is an ideal state before test execution [23].

The framework needs to know which activity in the application to run and this is specified using the
@Rule annotation. The annotation can also be used for enabling permissions for the application before
starting the activity. The test cases are run with the @Test annotation. Espresso can be used together
with other frameworks such as UiAutomator through the addition of more libraries. For execution of
the tests, the static methods of the Espresso framework are called. For example, the command used to
click a button is:

onView(withId(R.id.saveButton)).perform(click());

Robotium

Robotium is the oldest testing framework compared to the other two frameworks used in this study. It
is a very low-level framework mainly developed to test a single activity in an application. It is widely
used for functional UI testing but can be used for system and acceptance tests as well. It supports both
native and hybrid application tests.

Robotium is also an instrumentation framework like Espresso and thereby runs similarly, with the test
application running in the same device as the AUT. Like Espresso, Robotium can also access the
elements and corresponding classes directly and runs using AndroidJUnitRunner. It has the same
architecture as shown in Figure 2.4. The running of the test cases are similar to Espresso with the usage
of annotations.

The main difference between Espresso and Robotium is that Robotium extends an outdated
ActivityInstrumentationTestCase2 and Robotium does not have automatic synchronization like
Espresso. For test execution, Robotium uses Solo class for interacting with the device. The Solo class is
initialized by passing an instance of the instrumentation framework and then the methods 0f the class
are called for performing various actions. A Button can be clicked using the command:

solo.clickOnView(solo.getView(R.id.nextButton));

2.2.5 KPIs for Mobile Application Testing Automation Frameworks (RQ 1.3)

In order to perform a suitable comparison among different mobile application testing automation
frameworks, it is necessary to identify the most suitable KPIs that can be used for measuring the
effectiveness of frameworks. The following are some of the most useful KPIs -

1. Execution Time - This is the one of the main factors that can be used for comparing the
performance of two different frameworks. It refers to the time taken for all the automatic tests
to run to completion. The execution time can be dependent on various factors such as time for
loading to a device, time for locating the elements [12]. Ideally, a better performing framework
performing better should have less execution time. It is necessary to design the test cases in
such a way that execution time is solely based on the framework capability and not on external
factors such as network latency, battery shortage, etc. Moreover, execution time is also an
important factor in an Agile/DevOps environment as longer time may affect the speed of
continuous integration and deployment of software due to the delay in test cases getting passed.

The capability of the framework plays a strong role in the total execution time of the test suites.
For example, if the framework can execute tests in parallel, it will greatly reduce the execution
time. For this, the tests have to be independent of each other. Also execution time can be
reduced if the framework has capabilities to automatically detect functions such as incoming
calls rather than wait until the call element is identified [17].

2. Maintainability - This is concerned with the number of LOC to achieve the same test suite in
different frameworks. If the framework can execute the same functionality in fewer numbers of

12

lines, then it's believed to be more maintainable than the framework requiring more lines. Test
fragility is the frequent need for maintaining test cases due to the change in the GUI of the app
[24]. Fragility can be a significant problem as a failing test case might require in-depth
investigation until the problem is found [25]. There are different types of fragility depending
on the changes made in the app such as change in text or change in application flow. The
changes in LOC due to test fragility also gives an indication of the maintainability of the
framework.

3. Flakiness – Test Flakiness is defined as the failure of test cases due to non-deterministic
outcomes leading to some executions of a test to end with failure, but not all [26]. In complex
apps, this could occur due to high unreliability of the back-end service or network connection.
In terms of mobile application test automation frameworks, it could occur due to some
frameworks taking longer time to detect elements in some cases. In order to measure the degree
of different frameworks to handle flaky tests, the number of waits inserted in the code can be
calculated. This number basically refers to the number of wait statements of the framework
used. Usage of waits will avoid most of the tests from failing if the time of wait is enough for
the framework to detect the elements. Test flakiness can also depend on various other factors
such as automatic triggering of garbage collection in Android apps because the device is low in
memory [27]. Different frameworks may have a different degree of flakiness and a better
framework should have smaller number of waits. High memory usage in the device can also
cause lag in the GUI leading to more flaky tests [24]. It is to be noted that sometimes, the test
can be flaky due to a behaviour of the app such as a new popup that might hover around the
element to be detected causing the test to fail. However, since such situations do not give a
suitable comparison between frameworks, it was neglected from this study.

4. Reliability - The reliability of a framework can be measured as the number of test cases that
fail when they shouldn’t. This can be measured as the framework being incapable of passing
tests due to reasons that are solely framework specific. For example, some functionality in the
framework such as opening the navigation drawer or scrolling could be unreliable. Some
frameworks might not be able to detect the app in the mobile device causing tests to fail. Also,
some frameworks may fail the tests due to the framework drivers not being able to be
instantiated. The inspection of tests that fail due to some reason not related to code defect can
result in a wastage of resources [28]. A better framework should be more reliable in terms of
fewer failures due to framework defects rather than actual bugs in the mobile application.

5. Fragmentation - Different mobile devices may have different configurations such as
different OS, Android version, etc. [27]. This is called fragmentation and has made the testing
of Android apps very difficult. The different types of configuration can affect the tests resulting
in pass or fail and some kind of effort will be required in terms of code change or even the way
elements are detected using frameworks in order to try and make the test pass in as many
devices as possible. This can be a good measurement to determine the performance of
frameworks. Ideally, a framework should require few changes in the code and modifications in
the way elements are detected to run successfully in multiple devices.

6. Identification of defects – Another KPI indicator is the ability of a framework to identify
defects or bugs in the mobile application that have not been detected during manual testing
[29]. This strongly depends on the test cases selected and the framework’s capability to identify
edge cases that have not been noticed before. Some frameworks may execute the tests very
quickly and may be less reliable and not be able to identify the bugs but other frameworks may
execute the tests slowly and during such executions, a bug could be identified. Hence, it would
be interesting to see which framework identifies bugs with the same test cases. However, there
is no guarantee that the bugs can be identified by any framework as the main purpose of the
test automation frameworks is to detect regression bugs in existing functionalities that have not
been found before.

7. Battery Usage - Identifying the battery consumption in mobile device for different
frameworks can be used as a KPI measurement. Battery consumption is the drain in battery
due to various usages such as power, memory or network usage. Memory usage refers to the
CPU resources required by the framework for running the test suite in different devices [30]
which causes drain in battery. Power usage is measured as the charge consumed when testing
the application. Network usage refers to the Wi-Fi usage in the mobile device causing battery

13

drain. High resource consumption could cause the mobile devices to lag and maybe even cause
the tests to fail in certain situations. A framework having better performance should have less
battery consumption for the same test suite.

2.2.6 Challenges of Integrating Mobile Application Testing Automation Frameworks to Agile/DevOps
environment(RQ 1.4)

Due to the high frequency of development and release in the Agile/DevOps environment, there are
certain challenges associated that need to be discussed and handled while integrating mobile
application testing automation frameworks into such an environment. Some of the challenges are :

1. Unstable test cases - Sometimes the tests may be unstable and fail irrespective of the code
[31]. This can happen because of the unpredictable nature of the functionality being tested and
this could seriously affect the CI principle as new code will not be allowed to integrate due to
failure of test cases. Moreover, there will also be a wastage of time in identifying whether the
failure of the test is due to a bug or false positive/negative. Thus, maintenance of the
automation test suites due to unstable test cases is a big concern especially in an Agile/DevOps
environment.

2. Lack of proper infrastructure - To follow the practices of Agile and DevOps, a CI/CD

pipeline is used. It is necessary to have a proper infrastructure designed to integrate the test
suite into the pipeline. A suitable CI tool should be used and sometimes changes may have to
be made with respect to the configuration of the CI tool for supporting integration of test suites.
Another problem is also the security and reliability issues associated with the tool used
especially during the release process which might lead to increased errors and delays affecting
the continuous delivery practice [9].

3. Distributed Organization - When there is a large scale organization with multiple teams, if
each team does the implementation of automation test suites separately and then integrates to
a separate server, then there might be integration issues when everything has to be merged [9].
This mainly occurs in an Agile/DevOps environment when there are multiple scrum teams,
each implementing their own test suites. It could also lead to various other issues such as
duplication of test suites resulting in wastage of time and effort.

4. Build Time - Dependencies among test cases can increase build time enormously affecting the
performance and efficiency of CI [9]. This basically refers to the feedback loops from the test
cases. The ideal approach is to isolate the dependencies by making independent tests to run in
different processes. Different techniques such CRTS and CTSP could be used to decide which
test suites to execute at what intervals. Moreover, builds associated with CI systems requires
extra computation, bandwidth and memory resources and efforts should be made to reduce the
extra resources [9].

5. Awareness and Visibility of Build and Test Results – As more code integration happens,

the information corresponding to build and test results would increase exponentially [9]. This
could slow down the feedback in CI as it would take more time to interpret the results generated
from the build and make the necessary changes required. Therefore, an appropriate strategy
needs to be decided in the selection and usage of tools in order to present the results in a more
simplified and interpretable manner. Techniques such as CIViT could be used to represent the
testing efforts intuitively [32].

14

3. Research Methodology

This chapter presents an overview of the research methodology used in this thesis.

3.1 Research Process

The research process is presented in Figure 3.1. The project started with the literature review. This was
done by going through relevant blogs and scientific articles/papers. Through the literature review, Part
one of our research questions could be answered. First, an identification of the mobile application
testing automation frameworks available in the market today was carried out. Next, the popularity of
the frameworks was researched. Then, KPIs that could be used for comparison of frameworks were
identified. Finally, the challenges of integrating frameworks to Agile/DevOps environment were
identified.

The second part of the study involved performing empirical analysis on the results obtained. This was
done by firstly, designing and implementing the test cases on the selected frameworks. Then, the design
and implementation of the pipeline was carried out for integrating the frameworks into the
Agile/DevOps environment. Next, the methods to measure the KPIs were decided and implemented to
obtain results. Finally, the frameworks were evaluated based on different criteria.

 Figure 3.1: Research Methodology

3.2 Research Questions

The research questions answered in this study are –

RQ 1.1 : What are the frameworks available for mobile application test automation?

Start Literature Review

Blogs Scientific
articles/papers

Frameworks
available
(RQ 1.1)

Popularity of
frameworks

(RQ 1.2)

Identification
of KPIs

 (RQ 1.3)

Challenges of
Integrating frameworks

to Agile/DevOps
environment (RQ 1.4)

Analysis through empirical review

Design and
implementation of

test cases

Design and
Implementation

of pipeline

Measurement of
KPIs (RQ 2.1)

Evaluating
capabilities (RQ 2.2)

15

RQ 1.2: How do the frameworks rank by popularity?

RQ 1.3: What are the KPIs of mobile application testing automation frameworks?

RQ 1.4: What are the challenges of integrating mobile application testing automation frameworks in
Agile/DevOps environment?

RQ 2.1: How do the frameworks compare with each other with respect to the KPIs in Agile/DevOps
environment ?

RQ 2.2: What are the capabilities of one popular framework compared with another?

3.2.1 Research Questions Part One

Part one of the research questions were discussed in Chapter 2. The main goal of this part of the project
was to get an idea of the overall test automation frameworks and what metrics can be used to compare
them.

Research question 1.1 deals with the identification of mobile application testing automation frameworks
available in the market today. To answer this question, various blogs and research articles were
examined. There is a plethora of frameworks available today and many articles were found talking about
their usage and their capabilities. The research was narrowed down to Android testing automation
frameworks which are open-source. The common frameworks found were - Espresso, Appium,
Robotium, Calabash and MonkeyRunner.

Research question 1.2 deals with the ranking of the identified frameworks according to their popularity.
As to the knowledge of the author, there are currently no scientific articles that discusses the popularity
of the frameworks and therefore this research question was answered though informal means. Google
Trends website and Stack overflow which is a website for programming related questions were used. By
using two different sources, the results could be used if they are similar.

Research question 1.3 deals with identification of the KPIs to be used for comparing the different
frameworks. To answer this, first various scientific papers that discuss comparison of frameworks were
looked upon to observe the metrics which were used for evaluating. It was found that execution time
was used in almost all the papers. The papers only mentioning test automation frameworks were also
looked upon to get an idea of any metric that could be used such as flakiness.

Research question 1.4 deals with challenges of integrating the frameworks to the Agile/DevOps
environment. Various papers and articles were looked to research upon the difficulties of implementing
the CI and CD principles.

3.2.2 Research Questions Part Two

Part two of the research questions consists of collecting data and then obtaining results based on the
empirical analysis to compare the different frameworks.

Research question 2.1 deals with comparing the frameworks based on the results obtained after
performing analysis on the different KPIs that were identified. Many test cases were executed for the
collection of data and then analysed. The results are presented in chapter 5.1 and then discussed in
chapter 6.1.

Research question 2.2 deals with comparing the different capabilities among the different frameworks.
The capabilities were identified through the execution of different test cases and observing what
functionalities certain frameworks were capable of executing. A table showing the different capabilities
is presented in chapter 5.2 and then discussed in chapter 6.2.

16

3.3 Research Paradigm

3.3.1 Measurement of the KPIs

1. Execution time – In order to measure the execution time for all the frameworks, the time
taken for each test to execute without failure was measured. Each test’s execution time was
measured by running the test suite with the help of the pipeline at different times.

2. Maintainability – In order to calculate this metric, firstly the LOC for each test was
measured. This was done taking into account that all the frameworks are trying to achieve the
same functionality. Next, to check the efficiency of this metric in an Agile/DevOps environment,
the changes in LOC required for all the frameworks to make the test pass after a particular
release was also measured. This happens due to the fragility which is concerned with the
frequent changes in the GUI of the application [25]. This can be measured as the number of
LOC added, deleted or updated at a particular release for a test.

3. Flakiness – To measure flakiness, the number of waits required for each test was taken into
account. The number of waits were measured with LOC that contain some wait statements.
Waits were inserted in different places in the code in order to avoid the test failing due to the
framework’s inability of detecting the element quickly. Also, a flaky test was written in all the
frameworks and the framework’s capability to detect the element as soon as it appears was
measured.

4. Reliability – This metric is measured as the number of tests that fail when they should not.
There were no false negatives, that is the tests that pass when they should not and hence, was
not considered in this study. A comparison can be performed by taking a ratio of the total
number of times a test failed to the total number of times the test has been executed in each
framework.

5. Fragmentation – Different devices may affect the framework’s capability of detecting
elements and this can have an impact on the result of the test case. The number of ‘sleep’
statements can be measured among different devices for different frameworks. ‘Sleep’
statements are responsible for making the current thread of the program sleep for specific
duration. The reason ‘sleep’ statement was taken for measurement is that since measurement
of fragmentation is basically the changes to be made in different devices, the devices required
different number of ‘sleep’ statements due to the strange behaviour of the framework in certain
devices. Also, some frameworks may require an alternative way of performing an action in
certain devices and this can be measured as the number of alternate executions in different
devices to make the tests pass.

6. Identification of defects – In some cases, it might be possible for the framework to identify
a defect during the execution of the test cases. For comparison between frameworks, this can
be measured as the number of defects found in the tests by the framework. Defect here refers
to the test failing due to a bug in found in the mobile application which was probably not
identified during the process of manual testing.

7. Battery Usage – This metric is measured by calculating the battery drain after execution of
all the test cases for each framework. In order to obtain a fair result, the battery status is reset
before every execution of test cases for each framework.

3.3.2 Evaluating the capabilities

In order to estimate the capabilities, test cases were implemented using the frameworks and then the
difference in ease of executing various functionalities were observed and noted. These notes will give a
rough estimate of what features the respective frameworks are capable of performing while executing
several functionalities needed for automating the tests. This work will then give the reader a basis to
decide which framework to use according to the requirements and features of the mobile application
used for testing.

17

3.3 Data Collection

For the purpose of data collection, first a suitable mobile application was selected which had many flows
and different UI elements that would give a representative performance measurement. Then, a set of
tests were chosen in the selected mobile application to gather performance metrics. The tests were then
implemented in all the frameworks using a similar code style. Next, a CI/CD pipeline was built with the
help of Jenkins and the frameworks were integrated to the pipeline. The pipeline was then made to run
at specified intervals and different performance metrics such as execution time were gathered and
stored in the cloud. The tests were made to run in two different mobile devices in parallel to collect data
from both the devices.

3.4 Experimental Design

3.4.1 General Agile/DevOps Environment setup tools

There are several stages that occur in an Agile/DevOps environment. Firstly, the developers push the
code into a source repository. A VCS is used for this purpose. A VCS is mainly designed for pushing the
code and tracking the iterative changes made in the code [33], which is imperative in an Agile
environment where new code is pushed almost every hour. Git was used as the VCS and Bitbucket was
used as the repository tool for this thesis. Then a build tool was chosen based on the type of project
being implemented. For developing the test suites in Espresso and Robotium, Gradle was used as a
build tool and for Appium, Maven was used. The next stage was choosing a CI server and integrating
the VCS to it to build the code based on the selected build tool. For this study, Jenkins was used as the
CI server. The next stage was testing according to the unit or integration test cases written by the
developer. Jenkins runs test cases using tools such as Junit for unit testing. The final stage was the CD
server for deploying the code into production and Jenkins was used as the CD server.

3.4.2 CI/CD Pipeline setup tools

For designing a pipeline, selecting the CI tool is an important decision. There are several CI tools
available in the market today. In [34], Cruise Control, Hudson, Apache’s Continuum, Jenkins and Team
City were the CI tools that were compared. Among the different tools mentioned, Jenkins provides
clearer dashboards, has plugins that can be easily added, can find bugs ,etc. Also, the build flow in
Jenkins can be customized as the user wants, which cannot be done in the other tools easily. Moreover,
Jenkins can also be used as a CD tool thereby making it possible to create a CI/CD pipeline using one
tool itself. Groovy script was used to code the pipeline.

3.4.3 Test Environment setup

First a system was setup where the Jenkins master could run and this is called the master node. The
Jenkins master was setup to build an APK every time a new code change has been merged into the
repository of the mobile application(Bitbucket). Then another system was setup which acts as a slave to
the Jenkins master and is called the slave node. Then a CI/CD pipeline script was written on the Jenkins
server of the master node . The pipeline was scheduled at different intervals during the day and was
made to run on the slave node. The slave node had two mobile devices connected where the latest
version of the mobile app was installed and the tests would be run. The two different devices where
connected to the slave node using USB cables.

The Espresso and Robotium test suites were stored in the same repository as the code of the mobile
application(Bitbucket) and for Appium, a separate repository called Gerrit was used. All the frameworks
were run on the pipeline built.

For building the APK, the command used was:

gradlew clean :<app package name> :<test package name>

For running the Espresso and Robotium test suite, the command used was:

adb shell am instrument -w -r <test package name> androix.test.runner.AndroidJUnitRunner

18

 For running the Appium test suite, the command used was:

 mvn -B -Dmaven.test.ignore verify

3.4.4 Hardware/Software used

Table 3.1: Hardware/Software Versions

Master Node OS Linux Version 4.9.0-8-amd64

Slave Node OS macOS Catalina Version 10.15

Mobile Device 1 Samsung Galaxy S9+

Android Version- 9

Mobile Device 2 Honor 5X

Android Version – 5.1.1

Gradle Version 3.6.0
Maven Version 3.6.3
Espresso Version 3.2.0
Robotium Version 5.6.3

Appium Version 7.3.0

Jenkins version 2.235

For the purpose of this study, two mobile devices - Samsung and Honor were chosen as the former is a
fast device and the latter is a slow device which would give us good estimation about different KPIs in
different devices.

3.5 Assessing Reliability and Validity of Data Collected

3.5.1 Reliability

The literature survey was based on legitimate information sources such as Google Scholar, IEEE and
Springer Link. To ensure that the results collected were reliable, the mobile devices where the tests have
been run were rebooted before every run of the test to reduce the background services running. The
mobile application was uninstalled and installed again before every run. Also, the same version of the
mobile application was used for running the tests in all the frameworks in a single run.

3.5.2 Validity

To check the validity of the collected results, the data collected in a particular run for a specific test was
compared with the data from previous runs of the same test to make sure that there was not a large
difference in terms of values unless some change has been implemented in the test. We ensured that no
other applications were running on the mobile device during the execution of the tests that might have
affected the data collected.

3.6 Planned Data Analysis

For analysing the data collected, RStudio was used. Statistical analysis was done on the multiple
execution times obtained by the different frameworks using the two sample t-test. This gave an estimate
on the significance of the execution time in the frameworks. For other KPI metrics, quantitative analysis
and exploratory data analysis were done based on the data collected.

19

4. Methods

This chapter gives the details of how the experiments were conducted to gather results and meet the
goals of this thesis.

4.1 Selection of Mobile Application

In order to perform a suitable comparison of mobile application testing automation frameworks that
can be used by the industry, a mobile application that is currently active in the market and used by
millions of users across the world needed to be chosen.

Truecaller is a mobile application having the main functionality to identify the caller when you receive
a call from an unknown user. The application provides an all-in one app where the user can call, message
and search mobile numbers within the application itself. The application also provides advanced
blocking options to minimise the effect of spammers as much as possible.

The application is ideal for evaluating the performance of frameworks with respect to UI testing as the
application has a variety of different flows with different UI elements that can be used to benchmark
the performance of a framework. Moreover, the application also has a variety of different functions that
can be used for functional testing and evaluate the performance of the framework.

Truecaller has a very strong user base and a very good rating. Moreover, the application also has
frequent updates almost every hour during development thus making it an ideal candidate to use in an
Agile/DevOps environment. Selecting a real-world application will also make it possible for the tests to
be developed similarly as in an industry setting.

4.2 Selection of test cases

The selection of test cases is an important issue as they should be selected in such a way that
measurements for the different KPIs of mobile application testing automation frameworks could be
obtained. Each of the test cases has a set of steps followed. Most of them were implemented to execute
some functionality of the mobile application. The test cases were selected based on the guidelines from
the App Quality Alliance testing guide [35] and those which give a good performance measurement.

AQuA is a global association that focuses on helping the industry continually improve and promote
mobile app quality. It is responsible for producing testing criteria for different platforms against which
developers can test their apps. The list from AQuA had to be modified for automatic GUI testing as it
included testing in a more general form and there were some parts such as interacting with hardware
buttons that were not relevant for the scope of this study. AQuA was chosen as it gives some guidance
on what should be tested. Table 4.1 shows the AQuA tests chosen.

Table 4.1: AQuA tests selected

Name of Test Description of Test

Functionality Check Test the functionality of the application to make
sure it does what the function is supposed to do
(simplified version from AQuA)

Scrolling in menus Scrolling in navigation drawer and other
scrollable lists

Table 4.2 shows the test cases that have been selected and implemented for all the mobile application
testing automation frameworks in the selected mobile application. The detailed steps of each test are
given in Appendix A.

20

Table 4.2: Test cases implemented on mobile application

Name of
Test Case

Description Selection Criteria AQuA test

T1 Registration of
the user

Consists of many flows through different
screens which can be used to measure
battery consumption and performance
measurement

Functionality
Check

T2 Creating
Business
Profile

Consists of inputting several different types
of details which could test the performance
of the framework

Functionality
Check & Scrolling
in menus

T3 Counting the
toggles
checked,
updating one
toggle and
checking the
count of all
toggles

Gives a good performance measurement of
the scrolling behaviour due to selection of
last toggle of the screen as well as checking
state of all toggles in that screen

Functionality
Check & Scrolling
in menus

T4 Sending chat
message

Involves reading different types of elements
for a good performance measurement

Functionality
Check

T5 Initiating VoIP
Call

Involves reading different types of elements
for a good performance measurement

Functionality
Check

T6 Block and
Unblock
Contact

Involves identification of several UI
elements which can give a good performance
measurement

Functionality
Check

T7 Create, Edit
and Leave
Group Chat

Involves multiple flows which can give a
good performance measurement

Functionality
Check

T8 Check the
count of
unread
messages

Involves several flows and performing
different types of operations such as long
click that can measure the performance of
the framework

Functionality
Check

T9 Block, Check
Block List,
Unblock
Contact

Involves several flows and identification of
different elements

Functionality
Check & Scrolling
in menus

T10 Swipe Through
Different
Descriptions

Demonstrates the performance of different
frameworks with respect to swiping the
screens and detecting some element quickly
in the new swiped screen

Functionality
Check

T11 Block Number
Using Floating
Action Button
Menu Items

Consists of using different elements such as
Floating Action Button Menu items that can
give a good performance measurement

Functionality
Check & Scrolling
in menus

21

T12 Change Toggle
State,
Deactivate,
Check Toggle
State

Involves several flows that can test the
battery consumption and performance of the
framework

Functionality
Check

T13 Check Element
for Flakiness

Introduced for the purpose of checking the
degree of the frameworks to handle flaky
tests involving navigating to a particular
page where an element will appear but the
time it takes to appear will vary since the
element is fetched from a backend resource

Functionality
Check

T14 Save and
Remove
Contact

Demonstrates the selection of elements
outside the AUT capability in Appium. It
consists of going to the native contacts app
present in the device from AUT and saving a
new contact and then removing the contact
from the AUT

Functionality
Check

T15 Verifying Call
from Blocked
Contact End to
End

Demonstrates the end-to-end test capability
of multiple devices in Appium where certain
portions of the same test are run on different
devices. This test consists of blocking a
contact from one device, and then calling
from another device who has been blocked
and then verifying whether a blocked call
message is present in the spam tab

Functionality
Check

 4.3 Implementation of KPI measurements

1. Execution Time

For Appium, ‘extent reports’ was used as the reporting framework and TestNG was used as the
testing framework to monitor test executions. Extent reports is an open-source library that
generates customizable HTML reports [36]. TestNG is a testing framework with several
functionalities such as listeners. For the purpose of this project, TestNG listeners were used and
integrated with extent reports to generate the execution time for each test case.

For Espresso and Robotium, no ideal reporting framework was found that could monitor
execution time of each test individually rather than the total time of all the tests. Therefore, for
the purpose of this project, the time at the start of each test was measured and then the time at
the end of the same test was taken and the difference was calculated to be the execution time
for that test.

For the sake of validity, the author checked the execution time used in the above method with
the framework Appium and it was found that the reporting framework (Extent reports)
returned the exactly the same values as from the methods used in Espresso and Robotium.

 Figure 4.1: Extent Report of Passed Test

22

Figure 4.2: Extent Report of Failed Test

2. Maintainability

The measurement of LOC was done using the tool called CLOC and also manually. CLOC allows
the user to specify the name of the file to count the number of lines while ignoring blank lines.
The use of import statements was not taken into consideration for the measurement.

For the sake of validity, the code style used for all the frameworks was the same and written
solely by the author. The figure below shows the output from running the CLOC tool.

Figure 4.3: CLOC tool output example

3. Flakiness

The LOC of the wait statements were done manually by the author. The number of failures for
the flaky test in each framework were also done manually by observing whether the test passed
or failed.

4. Reliability

For Appium, the Extent report dashboard gave a clear representation of the number of tests
that failed and passed for each execution. For Espresso and Robotium, a counting variable was
defined in the code which was incremented every time a test has failed during execution.

Figure 4.4: Extent Report Dashboard

23

5. Fragmentation

The measurements were done manually by the author by counting the number of sleep
statements and alternate executions throughout the codebase of each framework.

6. Identification of defects

The measurements were done manually by the author by observing the tests that failed due to
defect in the application and the reason why they failed.

7. Battery Usage

In order to measure the battery statistics, “adb” command is used.

The full command used was:

adb shell dumpsys batterystats –charged <app package name>

Through the usage of this command, it generated aggregated observations about battery use in
the device since it was last charged [37]. This command gives a large amount of device
information and it was filtered to get only obtain the battery usage. The output is measured in
terms of mAh.

For the measurement, it was imperative that the battery statistics of the devices are reset before
each measurement in order to get accurate results. Since the command gives information since
the last time the battery has been charged, it is necessary to unplug the device before every
execution.

The command used to unplug the device was:

 adb shell dumpsys battery set status 3

This command does not necessarily disconnect the device from the system but sets the battery
status to discharging. Finally once the test execution is done, the battery status can be set to
charging again.

The command used to set the battery status to charging again was:

 adb shell dumpsys battery reset

 4.4 Implementation of the CI/CD pipeline

The design of the pipeline consisted of different pipeline stages that are responsible for particular
functions. Each stage executes only after the previous stage has finished execution. All the commands
to be executed on the command line are run in the Jenkins pipeline with the help of Shell Script
commands. The pipeline was built using a declarative syntax. The different stages are –

1. Stage(Prepare build directories) – This stage is responsible for creating the
directories on the system where the respective code will be pushed to.
The directories are created using the command:

 mkdir <directory name>

The directories are created to store the Appium Test suites and Espresso and Robotium
Tests after fetching them from the corresponding repository.

2. Stage(Clone and Build resources) – This stage is responsible for fetching the code
from the corresponding git repositories and also building an APK of the mobile app. In
order to fetch from the repository, the command “git” is used along with passing the
credentials and the URL and the branch as parameters.

24

For building the APK, the command used is:

gradlew clean :<app package name> :<test package name>

The APK is built for the latest version that has been pushed into the code repository at the
time the pipeline is run. This version keeps updating during every run of the pipeline
depending on the code pushed into the repository. This implements the CI principle where
the latest version of the code is automatically fetched from the repository at the time when
the pipeline is scheduled to run.

3. Stage(Run Espresso Test Suite) – This stage consists of running a python script which
is responsible for rebooting the device, installing the application and running the tests for
Espresso test suite multiple times until all the tests have passed once or the tests have failed
two times. Finally , the script also fetches the battery information from the device and prints
in the console. This stage is performed concurrently in both the connected mobile devices.
The pipeline is made to continue even though the stage might fail to finish on outcome of
failure of certain tests so that the next stage of the pipeline can be executed.

4. Stage(Run Robotium Test Suite) – This stage consists of running the same python
script but this time the test suites for Robotium are run. The python script can distinguish
between the different frameworks with the help of an argument passed. This stage is also
done concurrently for both the connected mobile devices and like the previous stage, the
pipeline is made to continue even though this stage might fail.

5. Stage(Run Appium Test Suite) – This stage consists of running the same python script
but this time the test suites for Appium are run. This stage is also done concurrently for
both the connected mobile devices and the pipeline will continue irrespective of the result
of this stage.

6. Stage(Run Verifying Call from Blocked Contact End to End test) – This stage
consists of running the ‘Verifying Call from Blocked Contact end to end’ test only in the
framework Appium. This is done directly without any python script by running the maven
command on the console and passing the devices as arguments.

After all the stages are completed, there is a “post” stage which is responsible for displaying the results
of all the previous stages in terms of success or failure and finally there is an “always” stage which gets
executed regardless of success or failure and is responsible for resetting the battery status of the device
and shutting it down. The built pipeline was made to run at specific schedules in the slave node where
the mobile devices were connected and the data collected was stored into the cloud for analysis during
a later stage.

To implement the CD principle, if all the tests have passed, then Jenkins will initiate the release process
of the latest version of the app. In an ideal scenario, the app should be released into production.
However, due to the large number of functionalities present in the mobile app and short span of time
available, it was not possible to automate all the tests. Thus for this project, the release of the latest
version of the app was limited to an alpha version. Moreover, since not all the test cases could be
implemented within the time span available, the continuous delivery of manually releasing the app into
the alpha version was implemented since some test cases had to be tested manually rather than the
continuous deployment principle where the release process happens automatically.

4.4.1 Overcoming challenges of integration of mobile application testing automation frameworks into
the pipeline -

1. Unstable Test cases– If there are frequent failures of tests, this will result in the pipeline
failing and this could result in the lack of a successful build. This will affect the release
process as the latest version of the mobile app will never be released. In order to overcome
this, the author has selected stable test cases. Such test cases should not fail often other
than from problems with the mobile application or the testing framework to reduce
uncertainty [38]. Also, in case there is a failure during an execution of the tests, all the tests
are re-executed instead of directly making the pipeline fail. This reduces the probability of
the pipeline failing due to flaky tests i.e. tests which fail during some runs but not always.
However, if the tests fail again after re-execution, then it is most likely the fault of the
framework. It is to be noted that in an ideal scenario, only the tests that failed would be re-

25

executed instead of all the tests. But in this study, since certain measurements of KPIs
required all the tests to be executed together, all the tests were re-executed in case of failure
of even a single test.

2. Lack of Proper Infrastructure – To overcome the problem of having an infrastructure
where the integration of mobile application testing automation frameworks becomes very
challenging, we chose to implement the pipeline on Jenkins which provides a wide range
of functionalities and security features. Through the division of stages in pipelines, it was
possible to control where the integration of test automation frameworks should take place.
The master node was made to connect to the slave node through the SSH protocol. SSH is
a protocol for secure remote login over an insecure network [39]. To fetch the code from
the repositories, the groovy script on Jenkins uses an additional parameter called
authentication present with the git command to allow only authorized access of the code
repositories.

3. Distributed Organization – This problem of test code duplication and merging issues
did not happen in this project as all the code was developed solely by the author. But the
current setup can be used in future as well as the code can be merged only after it has been
reviewed and approved by someone other than the person who has written the code with
the help of rules enforced on the CI pipeline. Also, only one pipeline has been implemented
on one CI server for running automation tests, avoiding any merging issues that might
occur due to multiple CI servers running the same automation tests. Moreover, a
notification is sent to all the concerned parties after a single run of the pipeline thus keeping
everyone aware about the current state of the pipeline and any issues that need to be
addressed.

4. Build Time – In order to execute the tests concurrently in two different devices at the
same time, Jenkins provides a “parallel” construct within a single pipeline stage. This can
reduce the build time enormously as the tests can be executed at the same time to collect
data from two different devices rather than wait until one test completes before starting the
same test in a different device. It is also possible to split the independent tests in two
different mobile devices to reduce the build time further, thereby also reducing the
feedback time from the execution of the test cases.
The author also attempted to implement the CRTS and CTSP techniques as described in
[27]. The main motivation behind these techniques is to select which tests to execute to
avoid excessive resource consumption at the pipeline. The authors in [27] have described a
set of parameters to achieve test selection and test prioritization in terms of Wf as a failure
window, We as an execution window and Wp as a prioritization window, where each window
can be defined as a number of test suites. For each window, the authors have considered
the tests that fail within Wf, the tests that have been executed within We and the tests that
are going to be executed within Wp. However, in this project, since three frameworks were
used, the notion of tests failing in Wf can only be applicable if the same test was failing in
all the frameworks at the same time. Since there were a negligible number of tests that fail
in all the frameworks, it was not possible to select an appropriate window size for Wf .
Moreover, since the main goal of this study was to compare all the tests implemented to get
maximum performance comparison, there would be no notion of windows We and Wp and
hence the techniques were excluded from our study although they could be used in the
pipeline if there was only one framework and there were more tests implemented [40].

5. Awareness and Visibility of Build and Test Results – For an easy and quick
interpretation of results of the pipeline, an additional plugin was added to Jenkins called
Blue Ocean [41] . It provides a user interface through which it is possible to see the result
of different stages of the pipeline in a graphical view along with the detailed description on
clicking the corresponding stage. Thus, reading unnecessary information can be avoided
and also can result in faster feedback of the build and test results.
The author has found that the interpretation of results through Blue Ocean corresponds to
partial use of the CIViT technique mentioned in [32]. CIViT is concerned with three
different aspects - types of testing, scope of testing and periodicity of testing. Among the
different types of testing supported by CIViT, only the new functionality type of testing was
needed for the scope of this thesis. New functionality testing is the testing of the
functionality that is currently under development [32]. Among the different scopes of
testing which refer to the segment of the overall system tested, subsystem testing was used
as the scope due to the wide range of functionality tested among different teams. Finally
with regards to periodicity of testing which corresponds to the time between the start of the

26

testing activity and the availability of feedback from the testing activity, the level used was
minutes and hours due to the time taken for all the pipeline stages to finish execution.

 Figure 4.5: Blue Ocean view of the Pipeline

From Figure 4.1, the different stages of the pipeline can be observed. The stages ‘Run
Espresso Test Suite’, ‘Run Robotium Test Suite’, ‘Run Appium Test Suite’ and ‘Parallel’
were run concurrently in the two connected mobile devices. The last ‘Parallel’ Stage is the
‘always’ stage for resetting the battery stats of the two devices.

27

5. Results and Analysis

This section describes the results and the analysis performed and more detailed discussion is given in
Chapter 6.

5.1 Measurement of KPIs

The empirical analysis was performed on the KPIs for all the frameworks based on the data collected.
The extra two tests implemented only in Appium to indicate the framework’s capability were not
included in the empirical analysis.

5.1.1 Execution Time

The execution time (in seconds) for all the test cases in the Samsung device are presented in Table 5.1.

Table 5.1: Execution time of different test cases in Samsung device

Test Case Appium Espresso Robotium
T1 Mean 46.681 17.361 22.625

Std.
Deviation

4.114 1.841 2.072

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T2 Mean 68.197 21.057 42.437
Std.
Deviation

4.566 1.676 1.849

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T3 Mean 46.979 6.417 30.729
Std.
Deviation

2.274 0.498 0.449

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T4 Mean 37 7.181 14.625
Std.
Deviation

1.610 0.969 0.680

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T5 Mean 38.111 16.958 24.597
Std.
Deviation

2.43 1.326 1.109

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T6 Mean 41.611 16.319 30.681
Std.
Deviation

3.462 1.471 1.111

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T7 Mean 28.063 9.601 33.478
Std.
Deviation

1.21 0.537 0.505

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T8 Mean 70.694 30.167 68.667
Std.
Deviation

4.130 1.583 1.792

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

28

T9 Mean 46.333 24.167 39.167

Std.
Deviation

2.266 0.519 0.663

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T10 Mean 55.438 12.625 41.435
Std.
Deviation

2.324 0.606 0.501

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T11 Mean 34.458 13.417 41.257
Std.
Deviation

2.583 0.868 3.291

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T12 Mean 87.606 32.861 71.569
Std.
Deviation

2.94 1.871 2.213

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

The Welch Two Sample t-test was conducted for all the test cases. This can be used to test whether the
two samples have equal means or not. A null hypothesis can be assumed with the meaning that the
means of the two different samples are equal. The p-value also known as the probability value is the
probability of obtaining the results as extreme as the observed results of a statistical hypothesis test,
assuming that the null hypothesis is correct [42]. A smaller p-value would indicate that there is a
stronger evidence in favour of the alternate hypothesis indicating that the means of two samples are not
equal. A commonly used significance level is 0.05 and if the p-value is less than 0.05, then there is
evidence against the null hypothesis.

From Table 5.1, since the p-values for all the test cases were 0.000 which is lower than 0.05, it can be
said that the differences between mean execution times of each framework are significant. The
framework Espresso is the fastest for all the test cases among the three frameworks due to the quick
detection of elements and execution of actions. There are only two test cases where Robotium is slower
than Appium otherwise Appium is the framework having the longest execution time in the test cases.
The boxplots for the results of execution time in the Samsung device are presented below.

29

30

Figure 5.1: Boxplots of results of execution time in Samsung device

From Figure 5.1, it can be observed that among all the frameworks, Appium has the largest variation in
execution times in almost all the test cases except T11 which can also be confirmed by looking at the
standard deviation values from Table 5.1. It can also be noticed that all the frameworks have some
outliers as well (through the indication of circles in the above Figure) with Appium having them in the
maximum number of test cases.

Table 5.2: Execution time of different test cases in Honor device

Test Case Appium Espresso Robotium
T1 Mean 78.361 61.208 69.181

Std.
Deviation

3.046 2.545 2.468

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T2 Mean 77.577 28.203 35.114
Std.
Deviation

2.109 2.097 2.922

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T3 Mean 67.854 7.396 27.5
Std.
Deviation

0.989 0.494 0.505

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T4 Mean 40.069 12.486 15.389
Std.
Deviation

1.763 0.934 1.217

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T5 Mean 45.93 21.014 25.786
Std.
Deviation

1.751 1.25 1.579

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T6 Mean 43.528 20.375 25.986
Std.
Deviation

1.50 2.052 0.942

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

31

T7 Mean 32.383 13.444 27.543
Std.
Deviation

1.328 0.503 0.504

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T8 Mean 74.306 36.639 57.465
Std.
Deviation

2.751 1.568 1.026

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T9 Mean 43.067 31.667 35
Std.
Deviation

0.72 0.781 0.885

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T10 Mean 52.125 15.917 34.543
Std.
Deviation

0.761 0.794 0.959

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T11 Mean 38.486 18.708 32.042
Std.
Deviation

1.363 0.895 0.659

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

T12 Mean 98.286 54.764 81.186
Std.
Deviation

2.121 2.755 1.158

P-value Espresso 0.000 Appium 0.000 Appium 0.000
 Robotium 0.000 Robotium 0.000 Espresso 0.000

The Welch Two Sample t-test was again conducted for all the test cases and the p-values for all the test
cases were again found to be 0.000 which is lower than 0.05 and hence it can be said that the differences
between mean execution times of each framework are significant in Honor device as well.

From Table 5.2, it can be observed that in the Honor device, the framework Espresso is again the fastest
for all the test cases while the framework Appium was found to be the slowest in all the test cases and
the level of speed again varies depending on the test case. On comparing the execution times of the
frameworks in the Honor device with the Samsung device, the frameworks have a longer execution time
in the Honor device. The boxplots from the execution time in the Honor device are presented below.

32

33

Figure 5.2: Boxplots of results of execution time in Honor device

From Figure 5.2, it can be observed that Appium again has the largest variation in execution time
compared to the other frameworks and all the frameworks have some outliers which are overall more
compared to the count in Samsung device.

5.1.2 Maintainability

The Table 5.3 summarizes the total LOC added, modified or deleted in different releases per test case
in different frameworks. Only the test cases that required change in the code were taken into
consideration for this measurement.

Table 5.3: Change in LOC per framework

Test Case Appium Espresso Robotium

T1 14 12 10

T2 53 40 45

T3 8 2 2

T4 1 1 1

T7 2 2 6

Total 78 57 64

For the same change in functionality, Appium requires more changes in LOC while Espresso requires
the least.

The total LOC for execution of the test cases in different frameworks is given in Table 5.4. Since all the
frameworks are trying to achieve the same functionality, it will be interesting to see which framework
requires less LOC to perform the same functionalities. The LOC was calculated from the test cases
written solely by the author and following a similar code style. All the import statements were excluded

34

from the measurement. The LOC for setting up the framework was also calculated. The framework
having the least LOC would be the best for maintainability.

Table 5.4: Total LOC per framework

LOC Appium Espresso Robotium

From Test Cases 389 368 371

From setting up the
framework

20 6 8

Total 409 374 379

The measurement was done using the CLOC tool by passing the path of the code file. Then the import
statements from all the files were subtracted manually. Since all the three frameworks were written in
the same coding language (java), the comparison can be justifiable. The import statements were
excluded as the imports are commonly done by the editor and would not play a major factor in the
maintainability of the code. The author also made sure that no blank lines were taken into consideration
through usage of the CLOC tool which excludes the blank lines in the measurement. The LOC from the
tests- T14 and T15 were excluded as these two tests were only implemented in Appium to indicate the
framework’s capability. The LOC for creating screenshots when the tests fail were also excluded for the
measurement.

From Table 5.4, it can be observed that Appium again has the largest LOC while Espresso has the least
making it best for Maintainability.

5.1.3 Flakiness

The number of wait statements per framework is given in Table 5.5. Wait statements refer to those
statements that have framework specific wait methods to wait for an element until it appears. Appium
required more number of wait statements while Espresso required the least.

Table 5.5: Number of Wait statements per framework

Framework Number of Wait Statements
Appium 144
Espresso 47
Robotium 102

To further test the degree of the frameworks to handle flaky tests, a flaky test (T13) was implemented
which depends on the element being fetched from the network and hence the time for the element to
get displayed may vary but, an upper bound can be estimated on the time before which the element is
guaranteed to appear provided the same network is used. Based on the test, it can be detected how
quickly the element can be identified by the frameworks once it appears after waiting for a period of
time.

The test implemented was fetching an element from a backend resource. After executing the test cases
manually for several times, it was found that the upper bound for the element to appear in the Samsung
device is 9 seconds and the upper bound for the element to appear in the Honor device is 17 seconds.
Thereby, the frameworks were set to wait until the element is detected for the time equivalent to the
upper bound for the corresponding device and the test will fail if the framework fails to detect the
element within that amount of time. Also, in all the frameworks, the author has implemented the
screenshot of the current screen in the device when the tests fail. Through this, the author can manually

35

verify whether the test actually failed due to the framework’s inability to detect the element or due to
the element not being present.

Table 5.6: Number of failures divided by total number of test runs in T13 per framework

Framework Number of failures/ Total number of test
runs

Appium 8/112 (7.14 %)

Espresso 0/112 (0 %)

Robotium 4/112 (3.57 %)

From Table 5.6, it can be observed that Appium has the maximum number of failures with respect to
the flaky test and Espresso has no failures at all.

5.1.4 Reliability

Table 5.7 shows the number of times the test failed divided by the total number of times the test has
been executed in all the frameworks and the devices. The percentage of failure is indicated in the
brackets.

Table 5.7: Number of failed tests divided by total number of tests per framework

Test Case Samsung Device Honor Device
Appium Espresso Robotium Appium Espresso Robotium

T1 0/72
 (0%)

0/72
(0%)

0/72
 (0%)

0/72
(0%)

0/72
 (0%)

0/72
(0%)

T2 1/72
(1.39%)

2/72
(2.78%)

1/72
 (1.39%)

1/72
(1.39%)

3/72
(4.17%)

2/72
 (2.78%)

T3 0/48
(0%)

0/48
(0%)

0/48
 (0%)

0/48
 (0%)

0/48
(0%)

0/48
(0%)

T4 0/72
(0%)

0/72
 (0%)

0/72
(0%)

0/72
(0%)

0/72
(0%)

0/72
 (0%)

T5 0/72
(0%)

0/72
(0%)

0/72
(0%)

1/72
 (1.39%)

0/72
 (0%)

2/72
 (2.78%)

T6 0/72
(0%)

0/72
 (0%)

0/72
 (0%)

0/72
 (0%)

0/72
(0%)

0/72
 (0%)

T7 0/48
 (0%)

2/48
(4.2%)

2/48
 (4.2%)

1/48
(2.1%)

3/48
(6.25%)

2/48
 (4.2%)

T8 0/72
(0%)

0/72
 (0%)

0/72
 (0%)

0/72
 (0%)

0/72
 (0%)

1/72
 (1.39%)

T9 3/48
(6.25%)

0/48
 (0%)

0/48
 (0%)

3/48
(6.25%)

0/48
 (0%)

1/48
 (2.1%)

T10 0/48
 (0%)

0/48
 (0%)

2/48
 (4.2%)

0/48
 (0%)

0/48
 (0%)

2/48
 (4.2%)

T11 0/72
 (0%)

0/72
(0%)

2/72
(2.78%)

0/72
 (0%)

0/72
 (0%)

0/72
(0%)

T12 1/72
(1.39%)

0/72
 (0%)

0/72
 (0%)

2/72
(2.78%)

0/72
 (0%)

2/72
(2.78%)

Total 5/768
(0.65%)

4/768
(0.52%)

7/768
(0.91%)

8/768
(1.04%)

6/768
(0.78%)

12/768
(1.56%)

36

From the Table 5.7, it can be observed that all the frameworks have some number of failed tests in the
Samsung device although theoretically, it should be zero. In Appium, the main test was failed frequently
in the Samsung device was T9. Robotium had the maximum number of failures while Espresso had the
least in the Samsung device. A similar trend can be observed in the Honor device as well with Robotium
again having the maximum number of failures and Espresso having the least. Also, the number of
failures in the slower Honor device is more than in the faster Samsung device for each framework.
Espresso seems to be the most reliable framework while Robotium seems to be the most unreliable.

5.1.5 Fragmentation

One of the major code changes that could result in different devices is the number of ‘sleep’ statements
which are basically the statements that make the current thread of program stop the execution for some
amount of time before continuing. This is different from wait statements as the wait statements are
framework specific which is associated with waiting only until some particular element appears but the
‘sleep’ statements are made to stop the execution for the amount of time specified. The ‘sleep’ could be
needed in various scenarios during execution of certain functionalities where the framework specific
wait method fails to detect the element in some devices. Another measurement of fragmentation is the
number of alternate executions that need to be done depending on the device’s inability to perform
some action using the same code.

Table 5.8: Number of sleep statements and alternate executions in Espresso framework

Test Case Sleep Statements Alternate Executions
T2 2 1

Total 2 1

From Table 5.8, it can be observed that Espresso requires just two sleep statements and one alternate
execution and both of them were from the same test case.

Table 5.9: Number of sleep statements and alternate executions in Robotium framework

Test Case Sleep Statements Alternate Executions
T1 2 -
T5 - 1
T7 - 1
T11 1 1
T13 2 -

Total 5 3

From Table 5.9, it can be observed that Robotium requires a large number of sleep statements and more
alternate executions compared to Espresso.

Table 5.10: Number of sleep statements and alternate executions in Appium framework

Test Case Sleep Statements Alternate Executions
T1 2 -
T6 1 -
T11 - 1
T13 1 -
Total 4 1

From Table 5.10, Appium is observed to require four sleep statements and a single alternate execution
making it better than Robotium but second best to Espresso.

37

5.1.6 Identification of defects

The identification of defects which were not found during the manual testing process by the frameworks
plays a major role in the performance of each framework. There were only two defects which were
observed as shown in Table 5.11 and all the frameworks were able to identify both of them.

Table 5.11: Identification of defects by the frameworks

Defect Appium Espresso Robotium
Contact not visible Yes Yes Yes
VoIP Icon not visible Yes Yes Yes

5.1.7 Battery Usage

For measurement, it is imperative that the battery statistics of the devices are reset before each
measurement in order to get accurate results.

The command used to get the battery statistics is:

 adb shell dumpsys batterystats --charged <app package name>

Table 5.12: Average battery usage with number of successful runs in parenthesis

Number
of test
cases

Samsung device (mAh)

Honor device (mAh)

Appium Espresso Robotium Appium Espresso Robotium
8 8.393(24) 0.634(24) 0.832(23) 16.319(22) 12.279(23) 13.985(21)
12 13.588(43) 1.628(44) 1.931(42) 26.411(42) 16.639(43) 19.377(39)

Initially, eight test cases were run and then finally twelve test cases were run and hence the results of
power consumption obtained for both the number are mentioned separately in Table 5.12. Since it
would be logical to take only executions where all the test cases were successful, the runs that resulted
in some failures of test cases were excluded from the measurement in each framework. The ‘Check
Element for flakiness’ test (T13) was not considered in this measurement due to the unpredictable
nature of the test.

It can be observed that Appium has the maximum power consumption in both the devices and Espresso
has the least.

5.2 Evaluating Capabilities

After the implementation of all the test cases, there were certain capabilities that all could perform and
there are capabilities that some frameworks could perform while others could not. The capabilities
found are summarized in the Table below and detailed discussion is given in Chapter 6. If the framework
can perform the capability but has certain problems in some cases, it is mentioned as partial and the
explanation is mentioned in the comments column.

 Table 5.13: Summary of Capabilities of different frameworks

Capability Appium Robotium Espresso Comments

Selection of child
element from parent
view

Yes Yes Yes

38

Selection of particular
index of element

Yes Partial Yes Can be done only for certain
elements such as text or elements
in ListView

Pressing the back
button

Yes Yes Partial Does not work on dialogs, popups
and root activity in Espresso

Taking Screenshot Yes Yes No

Waiting for elements to
appear

Yes Yes Yes

Entering text in
element

Yes Yes Yes

Opening and
Interacting with
elements in Navigation
Drawer

Partial Partial Partial None of the frameworks had the
capability of directly interacting
with items inside navigation
drawer and they had to be
identified separately

Scrolling behaviour Yes Yes Partial The element has to be inside a
ScrollView in Espresso

Clicking on particular
item in RecyclerView

Yes Yes Yes

Identifying items in
Dialogs

Yes Yes Partial Sometimes, the items could not be
identified in Espresso

Opening and
Interacting with Menu
Items

Partial Yes Partial Only Robotium has an inbuilt
method to directly identify items
inside the menu

Interacting with Soft
Keyboard

Yes Yes Partial Espresso can only close the soft
keyboard but it cannot perform any
other interactions

Performing long click
on element

Yes Yes Yes

Interacting with
Floating Action Button

Yes Partial Yes Robotium sometimes cannot detect
the floating action button

Interacting with items
inside the spinner
directly

No Yes No

Swiping the page in any
direction

Yes Yes Yes

Toggling Wi-Fi
connection

Yes Yes No

Identifying Toast
Messages

No Yes Yes

39

Clearing the app
preferences and the
Database

Yes Partial Partial Knowledge of the source code and
data is required in Espresso and
Robotium

Interacting with
elements outside the
AUT

Yes No No

End-to-End Testing of
multiple devices

Yes No No

From Table 5.13, it can be observed that there is no single framework that can perform all the
capabilities completely. Appium can perform 17 (80.95%) capabilities completely, Robotium can
perform 15 (71.4%) capabilities completely and Espresso can perform only 9 (42.86%) capabilities
completely. This shows that Appium is the best framework in terms of capabilities while Espresso is the
worst.

40

6. Discussion

In this chapter, the results presented in the previous chapter are discussed in more detail.

6.1 Measurement of KPIs (RQ 2.1)

6.1.1 Execution Time

Execution Time is one of the most important performance indicators as it gives a measurement about
how fast the framework can finish the execution of all the test cases. Through the use of the Welch Two
Sample t-test, it was found that the differences between mean execution times of each framework are
significant. This shows that execution time can be used as a KPI for comparison of test automation
frameworks. In both the devices, Espresso was the fastest in all the test cases.

In the Samsung device, there were two test cases where Robotium was slower than Appium. In T7, it
was found that Robotium framework took some time in detecting the Floating Action Button and the
text in the popups causing Appium to be faster. Floating Action Button is a circular button responsible
for triggering a primary action in the mobile app’s UI. In T11, Robotium again took time detecting the
Floating Action Buttons making it to be slower than Appium. Appium was slower in all the other test
cases. From the Boxplots in Figure 5.1, Appium has the largest variation of execution time in all the test
cases except T11 where Robotium had the largest variation. This was mainly due to the unpredictability
in detection of the floating action button in Robotium causing the framework to detect the element
quickly in some cases and detect the element after sometime in other cases. There were also outliers
observed in all the frameworks and Appium had the maximum of them. The outliers were present due
to the complex flows present in the AUT and the framework detecting the elements at different speeds.
The presence of maximum outliers in Appium could be the due to the large variation in execution time
which depends on different locator strategies used by Appium to find the elements and due to time
constraints, all the possible locator strategies were not studied.

Unlike the outcome for the Samsung device where Appium was faster than Robotium in two test cases,
for the Honor device the framework Appium was found to be the slowest in all the test cases as it takes
more time to detect the elements as well as execute actions. It can also be observed that the execution
time for the Honor device is longer than for the Samsung device for all the test cases and on all the
frameworks and this was expected due to the slowness of the Honor device. It can be noticed that there
are more outliers in different frameworks for the Honor device compared to the Samsung device. This
is because of the speed difference in movement across different screens of the mobile app in the slower
device resulting in elements sometimes appearing quicker or sometimes appearing slower. The usage
of a complex mobile application with multiple flows plays a significant role in the presence of outliers.
Appium again has the maximum number of outliers and the largest variation of the execution time
showing the unpredictability of the framework with respect to this KPI.

There are multiple deciding factors for the execution time such as the way the framework handles the
UI of the AUT and also the framework’s architecture. The instrumentation frameworks – Espresso and
Robotium are faster than the non-instrumentation framework - Appium. It can be concluded that in
terms of execution time, Espresso is the best framework having the fastest execution time in both the
devices and Appium is the worst framework having the slowest execution time in both the devices.
Appium is slow at typing text making the time longer when text has to be entered while Espresso and
Robotium directly add the text to the UI widget much faster. The overhead that occurs due to the client-
server communication in Appium where the Appium servers are responsible for performing actions on
the device could also result in increase in execution time. Espresso seems to be much faster in scanning
the different elements on the screen, searching for element in list and scrolling across the screen making
it the best framework based on this KPI. It also automatically runs test commands at suitable time when
the main thread is idle making it more faster in execution [43].

6.1.2 Maintainability

The maintainability was measured in this study based on the change in LOC for different releases and
the total LOC at the end for all the frameworks.

41

In an Agile/DevOps environment, the code of the application is bound to change frequently and some
functionality may be affected in some way or other, and thus it is necessary to make modifications in
the tests frequently to make them work in the latest version of mobile application. The LOC added,
modified or deleted during different releases can be a good indication of how much maintainability is
required for the particular framework compared to other frameworks. The best framework should
require less changes in LOC per release compared to other frameworks.

Table 5.3 shows the changes in LOC per test cases. From the Table, it can be estimated that the total
change in LOC for Appium is 78, for Espresso is 57 and for Robotium is 64. In T1, during different
releases, the option of optionally entering the number for verification was implemented as some devices
can detect the number automatically and to implement this change, Appium required more changes in
LOC due to handling of exceptions when element is not detected. In T2, the entire flow was changed
and Appium required more changes in LOC to handle new flow with different elements to be detected.
In T3, one of the toggles was removed and Appium required more changes in LOC to avoid detection of
that element. For T4, one of the buttons was modified with respect to the id of the element and all the
frameworks just required one small change. In T7, one of the floating Action Buttons was modified and
it required more changes in LOC in Robotium due to the framework’s problem of detecting the floating
Action Button in some devices. Overall, Appium requires more changes in LOC compared to the other
frameworks. Thus, it can be concluded that based on the change in LOC, Appium is the worst for
Maintainability and Espresso is the best. However, it is also to be noted that this depends on the type
of change being implemented and the results may vary depending on the change.

Another measurement for maintainability could be the total LOC for setting up the framework and
execution of all the test cases. From the Table 5.4, it can be estimated that the total LOC for Appium is
409, for Espresso is 374 and for Robotium is 379. On further research, it was found that the difference
in number of wait statements as well as framework’s capability to directly perform some actions using
inbuilt functions played a major role in the final outcome. Espresso required less wait statements due
to the framework’s capability of handling synchronization automatically. Also, Espresso could directly
perform some actions using inbuilt functions within a single line such as scrolling and performing some
action on an element while other frameworks required separate line for scrolling and separate line for
performing some action. Appium needed more LOC for setting up the framework due to the usage of
drivers and running of the application outside the mobile application’s source code while Espresso and
Robotium required very less setup.

Since Appium has the largest change in LOC and total LOC and Espresso has the smallest change in
LOC and total LOC, it can be concluded that Appium is the worst framework in terms of maintainability
and Espresso is the best framework.

6.1.3 Flakiness

Some frameworks have the capability to detect an element quickly whereas some frameworks take time
to detect elements especially when the mobile application is complex and involves many flows. This
could cause the tests to pass in some cases but fail in others. Therefore, to make the tests pass, it is
imperative to add wait statements to the test cases to avoid the test failing during all the cases. This is
mainly necessary in slow devices such as the Honor device used in this study. The number of wait
statements can be a good indication of the degree of the framework to handle flaky tests as the more
wait statements are required, the lesser is the framework’s capability to handle flaky tests. The
frameworks have different ways of handling the wait statements.

The command used by Robotium is:

solo.waitForView(id);

The id corresponds to the id of the element the framework has to wait for. Another action such as
clicking of the element cannot be done in the same command and has to be done separately. No
arguments such as the duration of the wait needs to be passed and is handled implicitly by the
framework.

42

The command used by Appium is:

new WebDriverWait(driver,10).until(ExpectedConditions.visibilityOfElementLocated(
 By.id("com.example.debug:id/button_reject_call"))).click();

The id of the element is passed along with the duration for waiting in seconds (10 in the above example).
Different actions such as clicking of the element can be combined in the same command. The above
example shows the explicit wait capability of Appium where the duration of wait for each element is
specified separately. Appium also supports implicit wait capability where all the elements in a page are
made to wait for the same duration until that element is found. This is done by using the command:

driver.manage().timeouts().implicitlyWait(30, TimeUnit.SECONDS);

In the case of Espresso, for this study, a custom matcher was used which checks whether the element is
present or not and if not present, repeat checking after an interval for few iterations. The commands
used are:

 try {
 check(matches(matcher))
 true
} catch (e: Exception) {
 false
}

The matcher in the above code sample is the matcher of the element to be found. The above code
sample is repeated for certain iterations until element is found.

From Table 5.5, it can be observed that Appium requires the most number of wait statements while
Espresso requires the least. It was found that framework Espresso has the capability to detect elements
very quickly even across screens due to the automatic handling of synchronization. For Robotium,
though the framework has the capability to detect some elements, it cannot perform any action on it
and therefore the wait statements were required in some elements. Appium on the other hand required
large number of wait statements as it cannot detect elements quickly. Based on the results, it can be
said that Espresso is the best framework in terms of flakiness and Appium is the worst.

One interesting thing to note is that the number of wait statements in Espresso can be reduced to zero
through the use of the idling resource capability of Espresso. However, this requires a change in the
source code of the application and hence, it was avoided in this study. A custom matcher was used for
waiting for a particular element in Espresso. Also, if the AUT was a simpler app without complex
hierarchies and flows, then the number of wait statements would have reduced considerably in all the
frameworks.

Table 5.6 shows the results of execution of the flaky test (T13) in different frameworks. A total of 112
tests were run, 56 in each device. It can be observed that in the case of Espresso, no tests failed indicating
that the element can be detected as soon as it appears and this is due to the automatic handling of
synchronization. In Robotium, two tests failed and it was found that this occurred in the slower Honor
device and the framework failed to detect the element on time although it was present. In Appium, four
tests failed, one of them in the faster Samsung device and three of them in the slower Honor device
indicating clearly that the framework takes a long time to detect the element once it appears. It can be
concluded that in terms of flakiness, Espresso is the best framework and Appium is the worst. In order
to execute flaky tests in Appium framework, it would be necessary to increase the waiting time to make
the test pass or implement explicit waits with maximum waiting time which could be measured on
multiple runs and this could affect the performance.

6.1.4 Reliability

The main goal of the mobile application testing automation frameworks is to identify any bugs in the
required functionality in the mobile application. Therefore, if the tests fail due to some other reasons
which are framework specific due to the framework’s inability to execute certain functionalities, this
could lead to wastage of resources in identifying the reason the test cases failed when there is no defect

43

in the mobile application. Thus, reliability plays a high role in the performance of the framework. For
this study, since the test cases that are implemented do not fail on purpose, then theoretically, all the
test cases should pass every time they are run. But issues in the framework could affect the results of
the test cases.

From the Table 5.7, it can be observed that all the frameworks have some number of failed tests in the
Samsung device. It was found that Appium sometimes failed to scroll the screen resulting in T9 failing
the most number of times. The other two tests failed because Appium failed to detect an element
resulting in timeout and the reason for that behaviour is unclear as on verifying the screenshot of the
failed tests, the element seems to be present on the screen.
In Espresso, two tests failed. The reason T2 failed was due to the usage of animator in one of the button
resulting in the test getting stuck for some period of time and then failing. This can be prevented by
avoiding usage of animators in elements though other frameworks do not suffer from this problem. The
reason T7 failed was due to the framework failing to interact with the elements in the dialog some times.
On further research, it was found that Espresso generally has problems interacting with elements on
the dialog.
Robotium seems to have the most number of failed test cases. There was one instance where the
navigation drawer failed to open resulting in failure of T2. The reason T7 failed was due to the
framework not being able to detect the menu item sometimes. The reason T10 failed was due to the
framework not being able to scroll down the screen sometimes. T11 failed due to the framework having
problems to detect the Floating Action Button Menu items.

All the frameworks have some number of failed tests in the Honor device as well. In Appium, the main
test that failed was again T9 due to the failure to scroll the screen as in the Samsung device. The reason
T7 failed was failure to detect the menu item. Finally, all the other tests failed due to the issue of Appium
sometimes not detecting the element even though it was present which also occurred in the Samsung
device.
In Espresso, the same two tests failed as those in Samsung device with the same reasons as described
above but this time with more frequency.
Robotium seems to have the most number of failed test cases in the Honor device as well. The reason
T2 failed was similar to the issue in the Samsung device regarding opening the navigation drawer. T5
failed sometimes due to the VoIP icon not being able to get detected though the element was present on
screen. The reason T7 and T8 failed was similar to the issue in Samsung device with respect to detecting
menu items. T9 and T11 failed due to the failure to swipe to bottom of the navigation drawer. Finally,
T12 failed due to the element not getting detected in some cases and the reason is unclear.

It can be observed that the frameworks have more failures in the Honor device than in the Samsung
device and this can be due to the slowness of the device and failure to execute certain functionalities.
Robotium has more failures due to issues with some functionalities such as detecting the Floating
Action Button, opening the navigation drawer or detecting the menu items. Appium similarly has some
failures mainly due to failure to detect some elements and scrolling of screen. Espresso has some
failures due to the issue of usage of animators in elements and it was found that since the framework
waits until the main thread is idle, usage of animators will result in the main thread never being idle
leading to failure of the test. Robotium has the most number of failures making it less reliable compared
to the other frameworks and Espresso seems to be the most reliable framework with the least number
of failures.

An issue that was specific to Appium that sometimes affected the reliability of the test cases was the
failure of the Appium server. Since Appium has a client-server architecture, it requires the client to send
commands to the server which is started on a specific port and listens for requests. Sometimes, this
results in a “socket hang up” error on the server side leading to the failure of all the test cases from the
time the error occurs and requires restarting of the server and running all the test cases again. On
further research, it was found that this could be happen due to multiple reasons, one of them being bugs
in the server itself. There are no bullet-proof solutions known yet for this issue and it needs to be kept
in mind when using Appium although it happens only a few times. A workaround could be to batch the
commands which is a feature supported by Appium where multiple Appium commands can be packed
inside a single Appium command to improve reliability of the tests.

44

6.1.5 Fragmentation

Fragmentation is one of the major problems in executing automated tests in Android applications due
to the plethora of different Android devices with varying speed and capabilities that might result in the
same test which is passing in one device to fail in the other. The reduction in the code changes made so
that the same test can work on different platforms will play a major role in the performance of the
framework. The number of sleep statements and alternate executions can give an indication about how
much changes need to be made for different devices.

Espresso required the least number of sleep statements (2) and alternate executions (1). In T2, two sleep
statements were needed for the Samsung device as it could not interact with element in dialog in two
different cases where as Honor device was able to do so. It was found that this happened due to the
element being detected too quickly before the full dialog was opened and hence the interaction could
not happen. An alternate execution was needed for closing the soft keyboard in the Honor device as the
original inbuilt function was not able to close the soft keyboard in certain cases. On a deeper analysis,
it was found that this happened due to the usage of animators in the element clicked before keyboard
close action is initiated. Soft keyboard is the on-screen keyboard in the mobile device for typing text.

Appium was the second best with four usages of sleep statements and a single alternate execution. In
T1, two sleep statements were needed in the Honor device as the two elements were either detected
wrongly or not detected at all. On further research, it was found that this happened due to the screen
taking a very long time to appear and therefore sleep statement was required even though the
framework’s wait statement was used. In T13, a sleep statement was required for the Honor device as
the framework could not long press an icon without first waiting for it in some cases. On deeper analysis,
it was found that the element detection was slow resulting in the need for a sleep statement. A similar
scenario happened in the failure of clicking of menu icon on T6 in the Honor device resulting in usage
of sleep statement. An alternate execution was required in scrolling down the navigation view as it was
found that the original method of using scroll method in UiAutomator inbuilt in Appium did not work
in the slower Honor device.

Robotium required the maximum number of sleep statements (5) and alternate executions (3). The
usage of sleep statements in T1 is similar to the usage mentioned in the framework Appium for the same
test and same Honor device. In T13, one sleep statement was required in the Honor device as a long
press to open a dialog resulted in the next element not getting detected in some cases. It was found that
this happened due to the unusual behaviour of the framework scrolling down in dialog before detecting
the next element which was at the top resulting in failure. A similar situation resulted in the use of
another sleep statement in the same test but this time the screen was scrolled down instead of the dialog
before detection resulting in failure. In T11, the spinner text was not detected in the Samsung device
resulting in usage of a sleep statement. Two alternate executions were needed as the framework could
not detect Floating Action Button in the Samsung device resulting in the usage of detection by image
instead of a button for those cases. Another alternate execution was needed for entering text in an
AutoCompleteTextView element which could not take place in the Honor device.

Based on the above discussion, it can be concluded that the framework Robotium is the worst in terms
of fragmentation due to multiple changes required between the fast and slow device while the
framework Espresso is the best with least number of changes.

6.1.6 Identification of defects

One of the main goals to execute automation tests is to check the functionality of the mobile application
and to identify any defects which were not identified during the process of manual testing. This can be
highly useful during the process of regression testing to check whether the old functionality is still
working after addition of new functionalities. The ability of the frameworks to identify defects plays a
major role in the performance of the framework.

There were two defects which was found by all the frameworks during the execution of all the test cases.
One defect was on searching for a particular contact, it was found that the search result did not display
the contact in spite of the contact being saved in the particular device. This was found to happen only
in the Honor device. On executing this test in all the frameworks, the test failed due to lack of desired
element not being present resulting in identification of the defect.

45

Another defect found was that on searching for a contact and opening the detail view of the contact, the
VoIP icon was not visible but if a conversation with the contact is first opened and then the detail view
of the contact was clicked, the VoIP icon would be visible. This was found through executing T5 first
resulting in the test failing in all the frameworks indicating that VoIP icon was not present and then
executing the T4 which resulted in conversation being opened and then finally executing the T5 again
which now passes due to the detection of the icon.

Since all the frameworks were able to identify both the defects, all the frameworks were equal in this
category. No other defects were identified although it could be possible to identify more provided more
test cases were implemented.

6.1.7 Battery Usage

Since real mobile devices were used for testing instead of the emulators, the battery usage that occurs
in the mobile device due to execution of the test cases by the frameworks plays an important role in the
performance of the framework. Some frameworks may result in larger usage in battery and it was
interesting to see which framework has the least battery drain.

The mobile devices have limited battery capacity. In the context of Agile/DevOps environment, since it
is required that the devices have to be connected to the system at all times for the pipeline to run, it
might lead to issues such as the device explosion due to overheating of the battery especially when there
is a high battery usage. One way of handling this issue is through the usage of device farms which are
mobile devices hosted on the cloud. They are virtual devices where the test cases could be executed.
However, the drawback is that there might be some bugs which may not be identified unless the test is
run on a real device.

From Table 5.12, it can be observed that Appium requires the maximum battery consumption in both
the devices and Espresso takes the least. It can be said that the battery consumption is proportional to
the time of execution of all the test cases in each framework as Appium has a much longer execution
time and the battery consumption seems to be much larger as well while Espresso and Robotium have
minute differences in execution times and the battery consumption among them seem to have minute
differences as well.

The battery usage obtained depends on various factors such as Power usage, Wi-Fi usage and CPU usage
as the adb command takes all factors which could account for drain in battery and sometimes the
framework could also result in extra usage of resources. For example, it is necessary to initialize drivers
separately in Appium which are responsible for sending commands to the mobile device which might
result in additional CPU usage and thus extra battery drainage while Espresso and Robotium executions
are handled within the framework itself. It is to be noted that there might be different results of the
battery usage for Appium if command batching is used although it might still not be as less as the battery
usage in Robotium and Appium. The overhead that occurs due to the client-server communication in
Appium could also play a factor in higher power consumption. The type of user interactions such as Tap
or Back button performed in the test cases executions could also play a factor in the energy consumption
obtained as mentioned in the study [44]. The study also found Espresso to be the most energy efficient.

Thus, it can be concluded that in terms of battery consumption, Espresso is the best framework and
Appium is the worst.

6.1.8 Ranking of frameworks

Based on the analysis done on all the KPIs, the frameworks can be ranked to indicate the best and the
worst frameworks with respect to the KPIs.

Table 6.1: Framework score based on KPI

 Execution
Time

Maintainability Flakiness Reliability Fragmentation

Battery
Usage

Total

Appium 3 3 3 2 2 3 16

46

Espresso 1 1 1 1 1 1 6

Robotium 2 2 2 3 3 2 14

Table 6.1 indicates the scoring given to all the frameworks. If the framework is best in the particular
KPI, it is given a score of one and if it is the worst, then a score of three is given. The best framework is
the one having the lowest score. The KPI ‘Identification of Defects’ was not considered since all the
frameworks have the same rank. As observed, Espresso being the best in all the categories has the least
score of six while Robotium is the next best with a score of fourteen followed by Appium with a score of
sixteen.

6.2 Evaluating Capabilities (RQ 2.2)

The capabilities found during the execution of the test cases on all the frameworks are discussed below
and code snippets on how they can be executed on different frameworks are displayed in Appendix B.

1. Selection of child element from parent view
It was found that in Espresso, it was possible to select elements under particular parent views
using ‘childAtPosition’ method. In Robotium, there was also a specific method to specify
child view of an element directly by using the ViewGroup class. In Appium, it was possible
by using ‘findElement’ method on the parent element. The child element can also be found
in Appium by using XPATH which is a locator strategy for identifying element based on the
location of the element on a view hierarchy. However it might not be completely reliable as
the view hierarchy changes between different mobile devices and using XPATH locator will
result in the same test failing in a different device.

2. Selection of particular index of element
It was found that it was possible to specify the index of a particular element being searched
using id or text in the frameworks - Espresso and Appium. This has several advantages such
as selecting elements which all have same id but at different positions in the view. However
in Robotium, it was possible to select an index only of specific type of element such as Text
or elements in a list.

3. Pressing the back button
It is possible to navigate back in all the three frameworks but the function does not work on
any dialogs, popups and on the root activity in the case of Espresso. This is a major limiting
factor in Espresso as most of the mobile apps require back button on dialogs or popups and
the Espresso back function just freezes the app indefinitely during such a case causing tests
to fail.

4. Taking Screenshot
Robotium and Appium provide inbuilt functions that are capable taking screenshots and
storing at specific locations but Espresso does not have any inbuilt functions and relies on
some third party library to implement this functionality. However, it is to be noted that the
user has to give permission for the application to write into storage space of the mobile device
in the case of Robotium [45].

5. Waiting for elements to appear
All the three frameworks provide functions to wait for an element until it is displayed and
this is useful in the case of flaky tests. The methods of implementation is similar to the code
snippets described in the flakiness section - 6.1.3.

6. Entering text on element
All the three frameworks had the capability of entering text however in Robotium, the inbuilt
function had the capability to enter text only on EditText type element not even on alternate
implementation of EditText. Therefore, an alternative method had to be used on elements
with other types.

47

It was found that Espresso and Robotium had the capability of the text being replaced with
the new inputted text while in Appium, a separate function had to be written to clear the text
before entering a new text else the new text gets appended to the already present text.

7. Opening and Interacting with elements in Navigation Drawer
Navigation Drawer is a UI panel that shows the mobile app’s main navigation menu. All the
three frameworks had the capability of opening the Navigation Drawer. While Espresso and
Robotium had inbuilt functions to perform the action, Appium had to get the element using
accessibility id and then click on it to open the Navigation Drawer. However, none of the
frameworks had the capability of directly interacting with elements inside the Navigation
Drawer and the elements had to be identified separately by text.

8. Scrolling behaviour
All the three frameworks had the capability of scrolling up or down, but in Espresso, this was
possible only if the view was inside a ScrollView. This was a major bottleneck as in smaller
devices, it was not possible to scroll down directly.

9. Clicking on particular item in RecyclerView
RecyclerView is a common list view using in Android. While Espresso and Robotium have
inbuilt functions for performing this capability, in Appium, XPATH locator had to be used to
get the item in RecyclerView.

10. Identifying items in Dialogs
While Robotium and Appium can always identify the elements in a dialog, Espresso had
some difficulties in identifying the elements in certain cases causing the tests to fail.
Robotium and Appium could identify the items in the same way as the other items while
Espresso had to use a different implementation for identifying these items.

11. Opening and Interacting with Menu Items
Opening the menu tab was possible in all the three frameworks but the option of directly
interacting with an item was available only in Robotium while in Appium and Espresso, the
element had to be identified separately by text.

12. Interacting with a Soft Keyboard
While all the frameworks support the option of closing the soft keyboard, only Robotium and
Appium can interact with it directly by typing some text with it. Espresso does not have the
capability of typing the text directly using the soft keyboard.

13. Performing a long click on an element
All the frameworks were capable of performing a long click. While Espresso and Robotium
had an inbuilt method which does not require the user to specify the duration of the click,
Appium required the user to manually specify the duration of the click in terms of
milliseconds.

14. Interacting with a Floating Action Button
Espresso and Appium were able to identify the floating action button always but in the case
of Robotium, the framework was not able to identify the button in certain cases leading to
usage of alternative implementations such as clicking on a particular index of an image. The
implementation is similar to clicking of an element and only the alternate implementation in
Robotium is shown below.

15. Interacting with items inside the spinner directly
Spinner is a drop down like menu that is used to display multiple values from which the user
can select only one value. Only Robotium has the capability of directly interacting with the
item inside the spinner through inbuilt functions while no such capability was found for
Appium and Espresso and the interaction with the spinner in these two frameworks can be
done by manual means by clicking on the spinner and then finding the element by text.

48

16. Swiping the page in any direction
All three frameworks have the capability to swipe the page in any direction through different
methods, though there is an observable difference in the performance between the different
frameworks on performing such an action.

17. Toggling Wi-Fi connection
Robotium and Appium have inbuilt methods that can be used to enable or disable the Wi-Fi
connection although permissions will be needed to make this work. Espresso does not have
any capability to perform this action. It is to be noted that in the latest android version (10),
apps are not allowed to toggle the Wi-Fi state directly and the inbuilt methods will not work
only in this version.

18. Identifying Toast Messages
A toast message is the popup dialog that appears for a short span of time displaying a
message. Espresso and Robotium were able to identify the toast messages but Appium
couldn’t do so in spite of the default Toast class present in XPATH locator class. The alternate
way is to use OCR to check whether the toast message was displayed.

19. Clearing the App Preferences and Database
Sometimes it would be necessary to clear the app data before the execution of the test cases.
Appium provides an inbuilt flag to enable clear the app data but in the other two frameworks,
it would be necessary to know the source code and data used to implement this capability
which might not be possible in all the cases. In Appium, this is done by setting the “noReset”
capability of the driver to false.

20. Interacting with elements outside the AUT
In some cases, it might be necessary to navigate outside the AUT to perform some actions.
For example, it might be necessary to enable some option in the settings of the mobile device.
It is stated in [46] that Espresso cannot interact with UI elements outside the app. Similarly
in [47], it is stated that Robotium can only interact with views that belong to your application.
Appium was able to interact with elements outside AUT due to the UiAutomator framework
integrated to it. Thus, all the system popups and other functions such as opening notification
could only be performed in Appium. To give an example, T14 was written only in Appium
which involved adding a contact to the mobile device’s native address book. The contact was
added by navigating to the native contact application of the device and then performing
required actions to add and save a contact.
Appium performs the required actions through the usage of identifying id of the native
element and the use of XPATH locator. While Appium has the capability to do this, it has
some limitations. For example, the same code cannot be used in all the mobile devices as the
native applications are strongly dependent on the device manufacturer. Thus, a test case
written for Samsung device has to be modified for the Honor device. Moreover, the test might
also not work with different devices from the same manufacturer if XPATH locator is used
due to the change in view hierarchy in different devices.

21. End-to-End Testing of multiple devices
Sometimes it might be necessary to execute a certain test simultaneously on two different
devices but we would want to execute different portions of it on different devices. For
example, suppose it has to be checked whether the call happens from one device to another.
Although it can be done by running two different tests in two different devices, it will not
simulate a real-life scenario where the waiting should happen only after the call is placed on
one device. Appium provides the capability to do this by executing the one test, but different
portions of it in two separate devices. To indicate this, T15 was done in Appium. This is
through the creation of two separate Appium drivers for the two mobile devices. In the other
two frameworks, the same test or different tests can be executed concurrently on different
devices but not different portions of the same test.

Appium seems to be capable of performing the maximum percentage of capabilities considered
completely while Espresso has the lowest percentage. The collected statistics are presented in Figure
6.1.

49

Figure 6.1: Number of capabilities met by the selected frameworks

50

7. Conclusions and Future work

This section describes the conclusions of our study conducted along with their limitations and possible
future work.

7.1 Conclusions

In this study, the comparison of the mobile application testing automation frameworks was conducted
in an Agile/DevOps environment. This is one of the first attempts to compare different testing
frameworks based on the KPIs identified by literature research, and implementing the study on a
complex mobile application and in an Agile/DevOps environment to measure the performance of the
frameworks in a real-world setting. Several Android UI testing frameworks were identified that are
available in the market today by looking through research papers and blogs. Then the most popular
frameworks were identified to perform the study, and since there were no past papers or blogs that
particularly mention the popularity of frameworks, they were identified through Google Trends and
Stack overflow data. The frameworks which are most popular currently are – Appium, Espresso and
Robotium. The structure of the most popular frameworks have been discussed with Espresso and
Robotium having similar architecture being part of the Instrumentation framework and Appium having
a client-server architecture.

In order to have metrics for comparison of these frameworks, the KPIs for the mobile application testing
automation frameworks were identified. The identification was done based on the general performance
metrics used in software development along with the specific metrics that are used for testing. The KPIs
identified were – execution time, maintainability, flakiness, reliability, fragmentation, identification of
defects and battery usage. Then, the challenges of integrating the test automation frameworks into the
Agile/DevOps environment were identified to give the reader an idea of what challenges to expect and
how to possibly overcome them. The challenges identified were - Unstable test cases, lack of proper
infrastructure, distributed organization, build time and finally, awareness and visibility of build and test
results.

To collect the data for performing empirical analysis, a few test cases were selected from the complex
mobile application used based on the AQuA guidelines and which can give a good measurements of the
performance of the frameworks. Then a CI/CD pipeline was built after addressing the challenges of
integrating the test automation frameworks into an Agile/DevOps environment. Data was then
collected by running different tests using the pipeline at different intervals on both the connected
mobile devices.
Based on the analysis, several conclusions could be obtained as discussed in Chapter 6. Espresso is the
best framework with respect to all the KPIs analysed. This was mainly because of the automatic
synchronization and ability to execute actions quickly and more reliably. Robotium was worse than
Appium in the KPIs – Reliability and Fragmentation. This was because of the unreliability in executing
certain actions in Robotium and because of large number of code changes required for different devices.
Appium was the worst framework in all the other KPIs and thus overall, it was the worst framework.
Many factors could be identified, but the main reason was the client-server architecture resulting in
slow execution of commands. It could also be due to the reason that the main purpose of Appium is to
be used for functional and end-to-end testing of multiple devices for mimicking the real life end user
experience.

However, on evaluating the capabilities of the frameworks based on the test cases implemented,
Appium was the best framework. This is because of the ability to execute certain capabilities such as
end-to-end testing of multiple devices and testing outside the AUT, which other frameworks were not
able to do. Moreover, Appium also could perform capabilities such as clearing the app preferences and
the database which other frameworks could only perform partially. Espresso on the other hand could
perform very less capabilities entirely, thus making it the worst framework in terms of capabilities.

The study we have conducted will be useful for industry to decide the best type of framework for
automation of testing, based on their specific needs and ideas of how to possibly minimize the
challenges of integration of the frameworks in an Agile/DevOps environment. The different KPIs and
capabilities identified will give the users an idea of the type of categories to consider before selecting a
particular framework. It is not possible to identify one framework as the best framework overall as each
framework has its own strong and weak points. The test automation framework selection needs to be

51

based on the nature and requirements of the Android application used for testing. If the AUT is simple,
then Espresso could be used for test automation as it is the best framework in terms of performance.
On the other hand, if the application is very complex and requires capabilities such as end-to-end testing
of multiple devices, Appium is the best option due to its large capabilities. Robotium could be used if
the application is slightly complex and performance is an important requirement.

7.2 Limitations of this study

There were several difficulties faced in this study. Firstly, implementing the test cases in a complex
mobile application was not easy due to the nature of the mobile app involving different types of elements
and complex flows. Therefore, a deeper research had to be conducted into each framework to explore
all the possible ways in which some action could be performed. Secondly, it was difficult to come across
information about the test automation frameworks and their capabilities in recognised scientific
literature and we had to go through numerous blogs and discussions to gather this information.

There are several limitations to this study. Firstly, only the most popular open-source frameworks were
considered in this study and we did not consider any paid or subscription based frameworks. Another
limitation is that only the Android test automation frameworks were considered, without other
platforms such as iOS. Thirdly, there might be a limitation of not considering all the capabilities of
different frameworks due to time constraints such as the cross-platform capability of Appium. Next, the
setup of the environment could also play a factor in the data collected from the KPIs. For example, the
execution time might change for each framework in each test case if the setup environment changes
either through the use of different CI/CD tools for the pipeline or through complete change in
environment. Also, KPIs such as Fragmentation could have more accurate results provided more than
two mobile devices were used. Next, the number of challenges associated with integration of the test
frameworks into an Agile/DevOps environment might be minimal and more challenges could be
identified provided more test cases were implemented and the continuous deployment principle was
included. Finally, the study was conducted only on one complex mobile application due to the time
constraints of executing all the test cases in different frameworks.

7.3 Future work

This study could be extended in the future to more complex applications with more test cases to further
evaluate the different KPIs and capabilities. More mobile application testing automation frameworks
could be used for comparison including paid frameworks as well. The list of KPIs and capabilities along
with the challenges in Agile/DevOps environment could be extended to include new ones or to add more
details to the existing ones. Finally, testing in iOS and other platforms could be conducted using more
cross-platform test automation frameworks.

7.4 Reflections

This thesis project gives guidance to the mobile application developers and testers when planning to
execute automated tests on mobile devices. The project performs a comparison of the three most
popular mobile application testing automation frameworks in an Agile/DevOps environment along with
the challenges due to the integration of the frameworks in such an environment. The comparison
performed on different test automation frameworks should give a clear idea of which framework to
select based on the requirement and functionality of the mobile application being tested along with ways
to address the challenges in an Agile/DevOps environment.

As the complexity of mobile applications increases, different corporations will benefit from the
automation of testing to deliver the best product to the end users. When working on this project, only
internal phone numbers were used and no user data was collected and the app was only run on two
specific devices used for this study.

It is our belief that this study will benefit many organizations in the problem of choosing which mobile
application testing automation framework to use available in the market today, as they can have a better
idea about the performance and capabilities of each framework since this study was conducted on a
complex mobile application that reflects a real-world industrial setting.

52

Bibliography

[1] J. Clement, "Google Play Store Numbers," 2020. [Online]. Available:

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/ . [Accessed 27
February 2020].

[2] J. Gao, X. Bai, W.-T. Tsai and T. Tsai, Mobile Application Testing :A Tutorial, IEEE Computer Society, 2014.
[3] S. Zein, N. Salleh and J. Grundy, "A systematic mapping study of mobile application testing techniques," The Journal of

Systems and Software, 2016.
[4] S. Nidhra and J. Dondeti, "BLACK BOX AND WHITE BOX TESTING TECHNIQUES –A LITERATURE REVIEW,"

International Journal of Embedded Systems and Applications (IJESA), vol. 2, no. 2, 2012.
[5] R. Meier, Professional Android 4 Application Development, John Wiley & Sons, 2012.
[6] H. Muccini, A. D. Francesco and P. Esposito, "Software testing of mobile applications: Challenges and future research

directions," in 7th International Workshop on Automation of Software Test (AST), IEEE, Zurich, 2012.
[7] M. Kropp and P. Morales, "Automated GUI Testing on the Android Platform," On Testing Software and Systems: Short

Papers, p. 67, 2010.
[8] A. Debbiche, M. Dien´er and R. B. Svensson, "Challenges When Adopting Continuous Integration: A Case Study," in

International Conference on Product-Focused Software Process Improvement, Springer, Cham, 2014.
[9] M. Shahin, M. A. Babar and L. Zhu, "Continuous integration, delivery and deployment: a systematic review on

approaches, tools, challenges and practices," in IEEE Access 5, 2017.
[10] C. Merina, . N. Anggraini and N. Hakiem, "A Comparative Analysis of Test Automation Frameworks Performance for

Functional Testing in Android-Based Applications using the Distance to the Ideal Alternative Method," in Third
International Conference on Informatics and Computing (ICIC), IEEE, Palembang, 2018.

[11] A. M. Sinaga, P. A. Wibowo, A. Silalahi and N. Yolanda, "Performance of Automation Testing Tools for Android
Applications," in 10th International Conference on Information Technology and Electrical Engineering, IEEE, Kuta,
2018.

[12] K. S. Arif and U. Ali, "Mobile Application testing tools and their challenges: A comparative study," in 2nd International
Conference on Computing, Mathematics and Engineering Technologies (iCoMET), IEEE, Sukkur, 2019.

[13] L. Ardito, R. Coppola, M. Morisio and M. Torchian, "Espresso vs. EyeAutomate: An Experiment for the Comparison of
Two Generations of Android GUI Testing," Proceedings of the Evaluation and Assessment on Software Engineering, pp.
13-22, 2019.

[14] P. Tramontana, D. Amalfitano, N. Amatucci and A. R. Fasolino, "Automated functional testing of mobile applications: a
systematic mapping study," Software Quality Journal 27.1, pp. 149-201, 2019.

[15] A. R. Chowdhury and P. Krishnakumar, "Mobile Application Testing using Automation frameworks," July 2019. [Online].
Available: https://www.browserstack.com/guide/mobile-application-testing-frameworks. [Accessed 28 February 2020].

[16] A. Zhukovich, "Android UI Testing Frameworks," 10 September 2019. [Online]. Available:
https://proandroiddev.com/android-ui-testing-frameworks-b0b52187ceb. [Accessed 28 February 2020].

[17] T. Lämsä, "Comparison of GUI testing tools for Android applications," University of OULU, 2017.
[18] "Google Trends," [Online]. Available: https://trends.google.com/trends/. [Accessed 1 March 2020].
[19] "Stack Overflow," [Online]. Available: https://stackoverflow.com/. [Accessed 1 March 2020].
[20] "StackExchange," [Online]. Available: https://data.stackexchange.com/ . [Accessed 1 March 2020].
[21] Paul, "A Deconstruction of the Appium Architecture," Edureka, 22 May 2019. [Online]. Available:

https://www.edureka.co/blog/appium-architecture/ . [Accessed 14 April 2020].
[22] H. Benake, "HB Blog 136: Android Automation Testing Using Espresso Framework," 19 May 2017. [Online]. Available:

http://harshalbenake.blogspot.com/2017/05/hb-blog-136-android-automation-testing.html. [Accessed 14 April 2020].
[23] "Test UI for a single app," [Online]. Available: https://developer.android.com/training/testing/ui-testing/espresso-

testing.html . [Accessed 14 April 2020].
[24] R. Coppola, L. Ardito and . M. Torchian, "Fragility of layout-based and visual GUI test scripts: an assessment study on a

hybrid mobile application," in Proceedings of the 10th ACM SIGSOFT International Workshop on Automating TEST
Case Design, Selection, and Evaluation, 2019.

[25] R. Coppola, M. Morisio and M. Torchiano, "Mobile GUI Testing Fragility: A Study on Open-Source Android
Applications," IEEE TRANSACTIONS ON RELIABILITY , vol. 68, 2019.

[26] Q. Luo, F. Hariri, L. Eloussi and D. Marinov, "An empirical analysis of flaky tests," Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp. 643-653, 2014.

[27] M. Linares-Vásquez, K. Moran and D. Poshyvanyk, "Continuous, Evolutionary and Large-Scale: A New Perspective for
Automated Mobile App Testing," International Conference on Software Maintenance and Evolution (ICSME), IEEE,
2017.

[28] K. Herzig, M. Greiler, J. Czerwonka and B. Murphy, "The Art of Testing Less without Sacrificing Quality," IEEE
International Conference on Software Engineering, 2015.

[29] P. Hegde, "5 Incredibly Useful KPIs for Test Automation," 9 September 2019. [Online]. Available:
https://www.logigear.com/blog/test-automation/5-incredibly-useful-kips-for-test-automation/. [Accessed 2 March
2020].

[30] . H. Kim, B. Choi and S. Yoon, "Performance testing based on test-driven development for mobile applications," in
Proceedings of the 3rd International Conference on Ubiquitous Information Management and Communication, 2009.

53

[31] A. Debbiche, M. Dienér and R. B. Svensson, "Challenges when adopting continuous integration: A case study," in
International Conference on Product-Focused Software Process Improvement, Springer, Cham, 2014.

[32] A. Nilsson, J. Bosch and . C. Berger, "Visualizing Testing Activities to Support Continuous Integration: A Multiple Case
Study," International Conference on Agile Software Development (XP), 2014.

[33] J. D. Blischak, E. R. Davenport and G. Wilson, "A Quick Introduction to Version Control with Git and GitHub," PLoS
Comput Biol., 2016.

[34] P. Rai, M. S. Dhir, M. and A. Garg, "A prologue of JENKINS with comparative scrutiny of various software integration
tools," 2nd International Conference on Computing for Sustainable Global Development (INDIACom), IEEE, 2015.

[35] "Baseline Testing Criteria for Android Applications," 30 November 2014. [Online]. Available:
https://www.appqualityalliance.org/AQuA-test-criteria-for-android-apps. [Accessed 7 April 2020].

[36] Rajkumar, "How to generate Extent Reports in Selenium Webdriver," 2019 23 October. [Online]. Available:
https://www.softwaretestingmaterial.com/generate-extent-reports/. [Accessed 30 March 2020].

[37] "Viewing Battery Use Data," 20 04 2016. [Online]. Available:
https://www.cnblogs.com/pengdonglin137/articles/5411802.html. [Accessed 04 05 2020].

[38] A. Ghahrai, "Test Automation Tips and Best Practices," 16 April 2020. [Online]. Available:
https://devqa.io/automation/test-automation-tips-best-practices/ . [Accessed 20 April 2020].

[39] T. Ylonen, "The Secure Shell (SSH) Authentication Protocol," Cisco, January 2006. [Online]. Available:
https://www.hjp.at/doc/rfc/rfc4252.html. [Accessed 20 April 2020].

[40] S. Elbaum, G. Rothermel and J. Penix, "Techniques for improving regression testing in continuous integration
development environments," Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2014.

[41] "Blue Ocean for Jenkins Pipelines," [Online]. Available: https://jenkins.io/projects/blueocean/. [Accessed 20 April
2020].

[42] B. BEERS, "P-Value Definition," 19 February 2020. [Online]. Available: https://www.investopedia.com/terms/p/p-
value.asp. [Accessed 6 May 2020].

[43] J. Unadkat, "Appium vs Espresso: Key Differences," 13 March 2020. [Online]. Available:
https://www.browserstack.com/guide/appium-vs-espresso. [Accessed 10 May 2020].

[44] L. Cruz and R. Abreu, "On the Energy Footprint of Mobile Testing Frameworks," IEEE Transactions on Software
Engineering, 2019.

[45] S. Joshi, "15+ Useful Robotium Code Snippets for Android Test Automation," 11 June 2014. [Online]. Available:
https://www.javacodegeeks.com/2014/06/15-useful-robotium-code-snippets-for-android-test-automation.html.
[Accessed 4 May 2020].

[46] "Stackoverflow:Questions- press overview button in Android Espresso," 15 March 2017. [Online]. Available:
https://stackoverflow.com/questions/42819656/press-overview-button-in-android-espresso/42822723. [Accessed 4
May 2020].

[47] "Stackoverflow Questions: Robotium Test Case For Android (System Dialog can not find OK and Cancel Buttons)," 13
December 2013. [Online]. Available: https://stackoverflow.com/questions/20613740/robotium-test-case-for-android-
system-dialog-can-not-find-ok-and-cancel-buttons. [Accessed 6 May 2020].

54

Appendix A: Detailed Steps of Test Cases

 T1

 The steps executed in this test case are -

• Step 1: Click “Get Started” Button on Home Page
• Step 2: Click Accept Permission Description Dialog
• Step 3: Enter mobile number
• Step 4: Click “Okay” Button
• Step 5: Click “Agree” Button on Privacy Page
• Step 5: Click “Type Name Manually” Button
• Step 6: Enter First Name
• Step 7: Enter Last Name
• Step 8: Click “Continue” Button
• Step 9: Click “Allow” Button for Draw Over Other Apps Permission
• Step 10: Click “Later” Button on Skip Backup Page
• Step 11: Click “Confirm” Button
• Step 12: Click Back to Dismiss Popup

 T2

 The steps executed in this test are -

• Step 1: Click on the navigation icon to open navigation drawer
• Step 2: Click edit profile icon on navigation drawer page
• Step 3: Click on “Create Business Profile” button
• Step 4: Click “Continue” Button
• Step 5: Enter business name
• Step 6: Choose “Education” option
• Step 7: Choose “College” option
• Step 8: Click “Next” Button
• Step 9: Enter the pin code
• Step 10: Click “Next” Button
• Step 11: Click “Enter Manually” Button
• Step 12: Enter street address
• Step 13: Click “Finish” Button
• Step 14: Click “I’m Done” Button
• Step 15: Click “Save”
• Step 16: Dismiss the Navigation Drawer

 T3

 The steps executed in this test are –

• Step 1: Click on the navigation icon to open navigation drawer
• Step 2: Click on “settings” option in navigation drawer page
• Step 3: Click on “general” option in settings page
• Step 4: Scroll to last element while reading the state of all toggles
• Step 5: Activate the last toggle
• Step 6: Scroll to the top
• Step 7: Scroll to the bottom again reading all the state of toggles

55

• Step 8: Check whether the count of all checked toggles increased by one

 T4

 The steps executed in this test are -

• Step 1: Click on the floating action button on homepage
• Step 2: Enter contact to send message in search field
• Step 3: Select the contact from the list
• Step 4: Enter the message
• Step 5: Click on the send button
• Step 6: Click on the navigation button to navigate back to home page

 T5

 The steps executed in this test are-

• Step 1: Click on the home icon in bottom bar
• Step 2: Click on the search field in home page
• Step 3: Click back to dismiss the popup dialog that appears
• Step 4: Enter contact name in search field
• Step 5: Select first contact from list
• Step 6: Click back to dismiss the popup dialog that appears
• Step 7: Click on the VoIP icon
• Step 8: Wait for five seconds and disconnect call

 T6

 The steps executed in this test are -

• Step 1: Click on the floating action button on homepage
• Step 2: Enter contact to send message in search field
• Step 3: Select the contact from the list
• Step 4: Click on the menu button at right hand side corner
• Step 5: Click “block Contact” option
• Step 6: Click “block” button
• Step 7: Click “close” button on popup dialog
• Step 8: Click on the spam tab
• Step 9: Search for the contact and click on it
• Step 10: Click on the menu button at right hand side corner
• Step 11: Click “unblock Contact” from the displayed list
• Step 12: Click “yes” button on popup dialog
• Step 13: Click on personal tab and check whether contact is displayed

 T7

 The steps executed in this test are –

• Step 1: Click on the floating action button on homepage
• Step 2: Click on “Create group chat” button
• Step 3: Select one contact from list
• Step 4: Select another contact from list
• Step 5: Click on the next button

56

• Step 6: Enter group name
• Step 7: Click on tick mark button
• Step 8: Click on the top toolbar in conversation
• Step 9: Click on edit icon
• Step 10: Enter a new group name
• Step 11: Click on okay button
• Step 12: Click on “Leave group” option
• Step 13: Click on “leave group” in confirmation dialog

 T8

 The steps executed in this test are –

• Steps 1-8 are the same as the steps 1-8 in T6 (for blocking contact one)
• Steps 9-16 are the same as the steps 1-8 in T6 (for blocking contact two)
• Step 17: Long click on contact one in spam tab
• Step 18: Click on contact two
• Step 19 : Click on the menu button at right hand side corner
• Step 20: Click “mark as unread” option
• Step 21: Check whether the number of unread conversations is increased by two
• Steps 22-29 are the same as the steps 9-12 in T6 (for unblocking contact one)
• Steps 30-37 are the same as the steps 9-12 in T6 (for unblocking contact two)

 T9

 The steps executed in this test are –

• Steps 1-8 are the same as the steps 1-8 in T6 (for blocking contact)
• Step 9: Click on the navigation icon to open navigation drawer
• Step 10: Click settings on navigation drawer page
• Step 11: Click on “block” option in settings page
• Step 12: Scroll to “my block list” option and click it
• Step 13: Check whether blocked contact is present
• Step 14: Click on the subtraction(-) icon next to the contact
• Step 15: Click “YES” on the popup dialog

 T10

 The steps executed in this test are –

• Step 1: Click on the navigation icon to open navigation drawer
• Step 2: Click settings on navigation drawer page
• Step 3: Click on “block” option in settings page
• Step 4: Click on “update” button in the block settings page
• Step 5: Wait until the required element appears

 T11

 The steps executed in this test are –

• Step 1: Click on the navigation icon to open navigation drawer
• Step 2: Click settings on navigation drawer page
• Step 3: Click on “block” option in settings page
• Step 4: Scroll to “unlock premium” button and click on it

57

• Steps 5-10: Wait until required element is displayed and swipe right , repeat for all
the 6 elements

 T12

 The steps executed in this test are –

• Step 1: Click on the navigation icon to open navigation drawer
• Step 2: Click on “settings” option in navigation drawer page
• Step 3: Click on “block” option in settings page
• Step 4: Click on the floating action button
• Step 5: Click on “Block a number” floating action button menu item
• Step 6: Click on spinner and select country code
• Step 7: Enter the number to block
• Step 8: Click “Block Button”
• Step 9: Click on Spam Tab
• Step 10: Check whether number is present and click on it
• Step 11: Click on the menu button at right hand side corner
• Step 12: Click “unblock Contact” from the displayed list
• Step 13: Click “yes” button on popup dialog

 T13

 The steps executed in this test are –

• Step 1: Click on the navigation icon to open navigation drawer
• Step 2: Click on “settings” option in navigation drawer page
• Step 3: Click on “general” option in settings page
• Step 4: Scroll to last element and activate the toggle
• Step 5: Click back to go to previous page
• Step 6: Click “Privacy Center” option
• Step 7: Click Deactivate option
• Step 8: Click Yes on the popup dialog
• Steps 9 – 20: Follow the steps in T1 for activation
• Step 21: Click on the navigation icon to open navigation drawer
• Step 22: Click on “settings” option in navigation drawer page
• Step 23: Click on “general” option in settings page
• Step 24: Scroll to last element and check whether toggle is in deactivated state

 T14

 The steps executed in this test are -

• Step 1: Click on the contacts icon in bottom bar
• Step 2: Click on the add icon to add new contact
• Step 3: Enter name of contact in native contact application
• Step 4: Enter mobile number of the contact
• Step 5: Click on the save button
• Steps 6-10: Same as steps 1-5 in T5
• Step 11: Click on the menu button at right hand side corner
• Step 12: Click on remove contact option from displayed list
• Step 13: Click “yes” button on popup dialog

 T15

58

 The steps executed in this test are -

 Device 1 -

• Steps 1-8 are the same as the steps 1-8 in T6 (for blocking contact)
Device 2 -

• Steps 1-5 are the same as steps 1-5 in T5
• Step 6: Click on the Call icon
• Step 7: Click the end call button

Device 1 -
• Step 9: Click on the spam tab
• Step 10: Verify that the blocked call message from contact is present

59

Appendix B: Code Snippets of execution of capabilities in different
frameworks

1. Selection of child element from parent view

 Espresso:
onView(allOf(withId(R.id.pageNextBtn), childAtPosition(withId(R.id.pageNextBtn),
0), isDisplayed()));

 Robotium:
 ViewGroup viewGroup = (ViewGroup) solo.getView(R.id.pageNextBtn,0);
 viewGroup.getChildAt(0);

 Appium:
 MobileElement parent = driver.findElement(“com.example.debug:id” +
 "/pageNextBtn"));
 parent.findElement(MobileBy.id("com.example.debug:id/pageNextBtn"
));

2. Selection of particular index of element

 Espresso:
 onView(withIndex(withId(R.id.pageNextBtn), 0));

 Robotium:
 solo.clickOnText("text",0);

Appium:
driver.findElements(By.id("com.example.debug:id/pageNextBtn")).get(0).click();

3. Pressing the back button

 Espresso:
 Espresso.pressBack();

 Robotium:
 solo.goBack();

 Appium:
 driver.pressKey(new KeyEvent().withKey(AndroidKey.BACK));

4. Taking Screenshot

 Robotium:
 solo.takeScreenshot();

 Appium:
 driver.getScreenshotAs(OutputType.FILE);

5. Entering text on element

 Espresso:
 onView(withId(R.id.edit)).perform(replaceText("Some Text"));

 Robotium:
 solo.enterText((EditText)solo.getView(R.id.edit),"Some text");

60

Appium:
driver.findElement(By.id("com.example.debug:id/edit")).sendKeys("Some Text");

6. Opening and Interacting with elements in Navigation Drawer

 Espresso:
 onView(withId(R.id.navigation_view)).perform(DrawerActions.open());
 onView(withId(R.id.block_settings)).perform(click());

 Robotium:
 solo.clickOnActionBarHomeButton();
 solo.clickOnView(solo.getView(R.id. block_settings));

 Appium:
 driver.findElementByAccessibilityId("Navigate up").click();
 driver.findElement(By.id("com.example.debug:id/block_settings")).click());

7. Scrolling behaviour

 Espresso:
 onView(withId(R.id.scroll_view)).perform(scrollTo());

 Robotium:
 solo.scrollToBottom();

 Appium:

driver.findElementByAndroidUIAutomator("new UiScrollable(new
UiSelector()).scrollIntoView" + "(new UiSelector().resourceId” +
(\"com.example.debug:id/scroll_view\"");

8. Clicking on particular item in RecyclerView

Espresso:
onView(withId(R.id.recyclerView)).perform(RecyclerViewActions.actionOnItemAtPosit
ion(0, click()));

 Robotium:
 solo.clickInRecyclerView(0, 0); //Clicking on first item in first RecyclerView

 Appium:

driver.findElementsByXPath("//android.support.v7.widget.RecyclerVie
w[0]").get(0).click();

9. Identifying items in Dialogs

Espresso:
onView(withText("YES")).inRoot(isDialog()).check(matches(isDisplayed())).perform(
click());

10. Opening and Interacting with Menu Items

Espresso:
openActionBarOverflowOrOptionsMenu(InstrumentationRegistry.getTargetContext());
onView(withText(containsString("Block"))).perform(click());

 Robotium:
 solo.clickOnMenuItem("Block");

61

 Appium:
driver.findElementByAccessibilityId("More options").click();
driver.findElementByAndroidUIAutomator("new
UiSelector().textContains(\"Block\")").click();

11. Interacting with a Soft Keyboard

 Espresso:
 Espresso.closeSoftKeyboard();

 Robotium:
 solo.hideSoftKeyboard();
 solo.sendKey((int)'A' - 36); //For typing A using soft keyboard

 Appium:

driver.hideKeyboard();
driver.pressKey(new KeyEvent(AndroidKey.BUTTON_A)); //For typing A using soft
keyboard

12. Performing a long click on an element

 Espresso:
 onView(withId(R.id.messagesTabIcon)).perform(longClick());

 Robotium:
 solo.clickLongOnView(solo.getView(R.id.messagesTabIcon));

 Appium:

new TouchAction(driver).TouchAction(driver).longPress(
LongPressOptions.longPressOptions().withElement(ElementOption.element(driver.findE
lement(By.id("com.example.debug:id/messagesTabIcon"))))).waitAction(WaitOpti
ons.waitOptions(Duration.ofMillis(500))).perform().release();

13. Interacting with a Floating Action Button

Robotium:
solo.clickOnImage(12); //12 is the index of image representing floating action button

14. Interacting with items inside the spinner directly

 Robotium:
 solo.pressSpinnerItem(0, 0); //Pressing first item in the first spinner

15. Swiping the page in any direction

 Espresso:
 onView(withText("Some Text")).perform(swipeRight());

 Robotium:
 solo.drag(0,10,0,10,2); //Swipe from (0,0) to (10,10)

 Appium:

new TouchAction(driver).press(PointOption.point(0,0)).moveTo
((PointOption.point(10, 10)).release().perform();); //Swipe from (0,0) to (10,10)

16. Toggling Wi-Fi connection

 Robotium:
 solo.setWiFiData(true);

62

 Appium:
 driver.setConnection(new ConnectionStateBuilder().withWiFiEnabled()
 .build());

17. Identifying Toast Messages

 Espresso:
onView(withText("Toast text")).inRoot(withDecorView(not(new
ActivityTestRule<>(Activity.class).getActivity().getWindow()
.getDecorView()))).check(matches(isDisplayed()));

 Robotium:
 solo.searchText("Toast Text");

18. Clearing the App Preferences and Database

 Appium:
 new DesiredCapabilities().setCapability("noReset", "false");

19. End-to-End Testing of multiple devices

 Appium:

Calling from the first device:

 driver.findElement(By.id("com.example.debug:id/call_icon"))
.click();

Ending call from second device:

driver2.findElement(By.id("com.example.debug:id/end_call"))
.click();

TRITA-EECS-EX-2020:690

www.kth.se

