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INTRODUCTION

In essence this paper is an analysis of the real 
nnmher system. We assume that the reader is familiar with 
the construction of R, the field of real numbers, and its 
properties as a complete Archimedean ordered field. We 
also assume that the reader is aware that Q, the field of 
rational numbers, is an Archimedean ordered field which 
is not complete. It is sufficient for the context of this 
paper to know that the field of real numbers is complete 
in the sense that every non-empty subset which is bounded 
above has a least upper bound, and every Cauchy sequence 
converges. Precise definitions of these terms will be 
given. Working tmder these assumptions we investigate 
various notions of completeness from the general context 
of an ordered field. This enables us to analyze the 
properties individually, and to introduce systems which 
satisfy some but not all of them.

In the first chapter the basic definitions of an 
ordered field, Archimedean order, absolute value, 
sequences, and Cauchy Completeness, are given. Lemmas 
and theorems pertaining to these definitions lead to two 
principal results. The first is that the field of 
rational numbers may be considered a subfield of any 
ordered field. The second is that an Archimedean ordered 
field may be considered a subfield of the field of real
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numbers. Examples are included to serve as illustrations 
of the ideas unde]? discussion. The chapter concludes with 
the description of a topology for an ordered field.

In the second chapter we introduce the definitions 
which pertain particularly to completeness. We show that 
certain completeness properties imply that the ordering is 
Archimedean. We find that not all Cauchy Complete ordered 
fields are Archimedean. We then consider the relationships 
between the various completeness properties showing that 
six are equivalent, and that in an Archimedean ordered 
field eight completeness properties are equivalent. We 
conclude by showing that R is essentially the only 
complete Archimedean ordered field. That is, we show that 
a complete Archimedean ordered field is order-isomorphic 
to the field of real niimbers.
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CHAPTER I

ORDERED FIELDS AHD ARCHIMEDEAN ORDER

The first portion of this chapter will he concerned 
with hasic definitions and theorems. The following nota­
tion about elements of a field F will be observed. 0 will 
denote the additive identity and e, the multiplicative 
identity. If x: e F then -x will denote the additive in- 
verse of x. If x / then x"̂  will denote the multiplica­
tive inverse of x. For all x e F we define l»x = x and
O'X = ®, For all m e N, mx is defined inductively by 
mx = (m - l)x + Xp If -m £ Z and -m < 0 then -mx is 
defined by -mx = m(-x). Appropriate adjustments will be 
made in this notation after showing that the field Q is a 
subfield of any ordered field.

The first definition describes the structure of an 
ordered field.

Definition 1.1: A non-empty subset P of a field F
is called a positive class if it satisfies the following 
three properties:

(i) If a e P and b e P, then a + b e P.
(ii) If a e P and b e P, then ab £ P.

(iii) If a £ F, then exactly one of the following
holds : a £ P, a = 0, or -a e P.

If a field F contains a positive class P, we say that F is
ordered bv P and that F is an ordered field.
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4
Before studying the consequences of this definition, 

it will he convenient to have an alternate definition.

Theorem 1.2: F is an ordered field if and only if
a relation < can he defined on F satisfying;

(i) Ifx, y, z e F ,  and x < y, then x + z < y + z.
(ii) Ifx, y , z E F, © <  z, and x < y, then xz < yz. 

(iii) For all x, y e F, exactly one of x = y, x < y, 
or y < X  holds.

(iv) If X, y , z E F, x < y ,  and y < z, then x < z.
Proof: Part I: Suppose F is an ordered field, then

F contains a positive class P. Define a relation < on F
hy: a < h if and only i f ( h - a )  e P.

(i) Let X, y, z e F, then x < y if and only if 
(y - x) E P. But ( y + z ) - ( x + z )  = y + z - x - z = y - x .  
Thus (y - x) E P implies (y + z) - (x + z) e P. That is, 
if X < y, then x + z < y + z.

(ii) Suppose x, y , z e  F, with 0 < z, and x < y, then
(z - ©) = z E P and (y - x) e  P; so (y - x)z = (yz - xz) e P,
Hence, xz < yz.

(iii) Suppose x, y e  F. Either (y - x) e  P, and
hence x < y; or (y - x) = 0, and hence x = yj or
“(y - x) E P, and hence y < x.

(iv) Suppose X, y, z e  F, with x < y, and y < z.
Then y - x e P and z - y e  Pj hence (z - y) + (y - x) e  P.
That is, z - X E Pj so x < z.
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5

Part II: Suppose there is a relation < defined on
the field P satisfying (i), (ii), (iii), and (iv).
Let P = {x I X e F and 0 < x}. If a, h e P, then 0 < a, 
and © < h.

(i) 0 < a implies 0 + h < a + h which in turn
implies h < a + h. So © < a + h and a + b e  P.

(ii) ©"b < a*b, so © < ab. Thus ab e  P.
(iii) Let a e  F. Since © e  F, either a = 0; or

© < a, hence a e  Pj or a < 0 which implies a - a < 0 - a
which in turn implieq © < - a, hence -a e P.

Therefore P forms a positive class for F, and F is 
an ordered field.

Thus, given an ordered field F , one may assume that 
there exists a relation < defined on F satisfying the 
conditions listed in theorem 1.2. As a matter of notation 
if a, b E  F, then b < a will sometimes be written a > b. 
a < b will be read ”a is less than b", and a > b will be 
read "a is greater than b” . a < b will be used when it is
true that either a < b or a = b; and a > b will be used
when it is true that a > b o r a = b ,  a < b < c will be 
used to mean a < b and b < c; and a < b < c will be used 
to mean a < b and b < c. When it is appropriate, the terms 
"maximum" and "minimum" will be used in the same sense 
that they are used in referring to the real numbers.
Some basic properties of the relation < are summarized 
in the next lemma.
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Lemma 1.3: If î* is an ordered field with, relation <,
then:

(i) 0 < e.
(ii) 0 < a implies © < a"^,

(iii) m, n e Z with m < n in Z implies me < ne in JP.
(iv) a < h and c < d implies a + c < b + d.
(v) a > b and c < © implies ac < be.

(vi) a < 0 implies a"^ < 0.
Proof:
(i) If it is not true that 0 < e, then since 

e / 0, 0 < -e. © < -e implies 0 < (-e)(-e).
(-e)(-e) = e; so © < -e implies © < e. This is a contra­
diction, hence 0 < e.

(ii) Assume a~”̂  < 0. Then a~^*a < ©*a. That implies 
e < 0, contradicting (i), so 0 < a""̂ .

(iii) m < n in Z implies n - m > 0 which implies 
(n - m) e It will be sufficient to show that n e U
implies ne > ©, as then we will have (n - m)e > 0 which
will imply ne - me > 0, and in turn ne > me. l*e = e,
e > 0, and ne = (n - l)e + e. Hence by induction, ne > 0.

(iv) a < b implies a + c < b + c . c < d implies
b + c < b + d. Thus, a + c < b + d.

(v) c < © implies 0 < - c which with b < a implies
b(-c) < a(-c)o Consequently, -be < -ac, which implies 
ac < be.

(vi) Assume a“^ > 0, then a'^^a < a“^*0 which means
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e < 0. This is a contradiction, thus a ^ < ©.

Before continuing, we discuss some exsimples. Both 
the field R of real numbers and the field Q of rational 
numbers are ordered fields ([1], p. 34),

There are fields which are not ordered fields. The
field 0 of complex numbers is one such field. To see this,
suppose P is a positive class for C, Since i (), either

2i G P or -i e P. i e P implies i e P which is the same as 
-1 E P. This in turn implies -̂ i - -l»i e P which is a con- 
tradiction. -i e P implies (-i) e P which is the same as 
-1 E P, leading to i e P, which is another contradiction.

Another ordered field is the field Q(x). Elements 
of Q ( x )  are of the form f(x)/g(x) where f(x) and g(x) are 
polynomials with rational numbers as coefficients, and 
g(x) is not the zero polynomial. Addition and multiplica­
tion are defined in Q(x) as usual. The positive class P 
is the subset consisting of all elements of the form 
f(x)/g(x) in which the leading coefficient of the product 
f(x)*g(x) is a positive rational number.

A fourth example of an ordered field is developed 
in the next definition and subsequent theorems.

Definition 1.4: Let E be the field of real numbers
and X  an indeterminate. R<x> will denote the set of all 
expressions g where

CO ,
g = , with a^ E R for all k,

with the understanding that at most a finite number of the
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coefficients where k is negative, are different from
zero. Addition and multiplication are defined in R<x> 
as follows:

CD , 00 T.S 1̂ =2^  aĵ x and h = h^x , then

= k = 5 œ  ̂ k"" ^i^ j '
R<x> is called the field of extended formal rower series 
over R ([4], p , 15).

Theorem 1.5: R<x> is a commutative ring with
identity.

Proof: Let f, g, h e R<x> with
00 k  00 , 00 ,

^ " k=-oo V  ' S “ k = - o o ^ k ^  * ^  k=-QD °k^ '
00 . T,

f + g = i5;=?oo ̂ ^k ^k with â  ̂+ E R, Because of the
restrictions on f and g, at most a finite number of the 
coefficients (a^ + b^^), where k  is negative, are different 
from zero. Thus f + g e R<x>. In a similar manner 
fg E R<x>. Hence, R<x> is closed under both operations.

Associativity of addition, commutativity of addition 
and multiplication, and distributivity are direct conse­
quences of the corresponding properties in R, Associativity 
of multiplication is just slightly more complex; we present 
it here.

w  s

1 +J=s ^
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00 ^(fg)h > where

Then m, = 2 ( 2 a. h . )c .^ s+r=k i+j=s ^ 0 ^

00 tOn the other hand, gh =t=-œ ̂ t^ where = 2 h^c

GO

j+r=t  ̂ ^

kSo f(gh) V  "k

Then w, = 2 a. ( 2 h.c )„
^ i+t^k ^ o+r=t ^

Both and involve finite snms because only a finite 
number of the coefficients with a negative index are 
non-zero. Therefore,

m. = 2 ( 2 a. b.c ) = 2 a. b.c and
^ s+r-k i+j=s ^ J  ̂ i+j+r=k ^ ̂

w, = 2 ( 2  a.b.c ) = 2 a b .c .
i+t=k j+r=t ^  i+j+r=k ^

Thus f(gh) = (fg)h.
1 can be considered to be an element of R<x>, with

ag = 1 and a^ = 0 for k / 0. l»g = g for all g e R<x>,
Thus, R<x> is a commutative ring with identity.

A lemma and a theorem will be used to show that R<x> 
is a field,

oo ,
Lemma 1.6; If f = k=-oo where a^ = 0 for k < 0,

and a^ / 0, then f has an inverse in E<x>j that is, there
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10
exists g such that fg = 1,

03 kProof : f can be written as o.̂ x .
OD T. , .Let g = b^x (that is bĵ  = 0 for k < O;, where b̂  ̂for

k = 0 ,  1, 2, are chosen as follows: We want a^bg = 1,
hence let bg - ag"^ which exists since ag / 0. We want
agb^ + a^bg = 0, hence let b^ = -ag^a^bg. Having chosen
bg, b^, b^, let b^^^ be the solution to the equation:

+ ^ 2 V l  + --- + + ^n+1^0 '
Then b^ e R for all k, and g e R<x>, Moreover, fg = 1.

Theorem 1,7: E<x> is a field.
Proof: E<x> has already been shown to be a

commutative ring with identity. Let g e  E < x >  with g / 0,
kthen g =k=-oD “ There must exist an integer r such

that a^ / 0, with â  ̂ = 0 for k < r. Consider g-x”^ which
00

is of the form ^Zg bjX'J where b^ = a^^^. bg = a^ / 0,
By the lemma, gx"°^ has an inverse h in R<x>. Therefore
(gx~^)h = 1, implying g(x~^h) = 1, Thus g has an inverse 
in R<x>, and E<x> is a field.

The final step in the sequence is to define an order 
for E<x>,

Theorem 1,8: E<x> is an ordered field.
Proof : Let P be the subset of E<x> consisting of

elements g =k=-co ̂ k^ where the first non-zero coefficient 
is positive. That is, g e  P if there exists an integer t
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11
such that k < t implies sû  = 0, and > 0, Let 

00 ,
h =k=?oo''^k where k < r implies h^ = 0, and h^ > 0. Let
w = minimum {t, r}. Then k < w implies (a^ + hĵ ) = 0, and

+ h^ > 0„ Thus g e P, and h e P, implies g + h s P.
I f i + j < t + r ,  then either i < t or j < r. Hence,

k < t + r implies S a.h. = 0 „  I f i + j = t + r  and
i+j=k ^ ^

i > t, then j < r; i f i + j = t + r  and j > r, then i < t.
Hence, k = t + r implies that S a.h. = a.h > 0. Thus

i+j=k ^  ̂ ^ ^
g e P, and h e P, implies gh e P,

Clearly g e E<x> implies that g e P, g = 0, or
“g G P.

Therefore, P forms a positive class for E<x>, and 
R<x> is an ordered field.

R<x> will serve as an important counter-example in 
the next chapter.

The next item to he discussed is the imbedding of 
the field of rational numbers in any ordered field. Let 
F he an ordered field, let Z' = {me I m e Z}, and let 
Q' = C(me)(ne)~^ I m e Z, n e N ] „ Since me = me « e = 
me° e"^ = me»(le)~^, we have Z' c Q* c F .

Theorem 1.9: Let F he an ordered field and let
t ->F he defined hy Km/n) = (me)(ne)~^. Then $ is an 
order-preserving field isomorphism of Q, into F, $(Q) = Q' , 
and \̂ (Z) = Z" ,
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12
Proof: Suppose m/n = r/s„ Then ms = nr which implies

(ms)e = (nr)e. Hence (me)(se) = (ne)(re) and (me)(ne)"^ = 
(re)(se)“^„ Thus $ (m/n) = «li(r/s) and  ̂ is well defined.

Suppose *(m/n) = *(r/s). Then (me)(ne)"“̂  = (re)(se)~^ 
which implies (me)(se) = (re)(ne). Hence (ms)e = (rn)e and 
ms = rn. Thus m/n = r/s and  ̂ is one-to-one.

$(m/n + r/s) = *((ms + nr)/(ns))
= ((ms + nr)e)((ns)e)~^
= (mse + nre)(nse)”^
= (mse)(nse)~^ + (nre)(nse)”^
= (me)(se)(ne)”^(se)~^

+ (ne) (re) (ne)"‘̂ (se)“^
= (me)(ne)"‘̂  + (re)(se)”^
= $(m/n) + '|r(r/s)

$( (m/n)(r/s) ) = ( (mr)/(ns) ) = (mre)(nse)”^
= ((me)(re))((ne)(se))”^
= (me)(re)(ne)“^(se)”^
= (me)(ne)~^(re)(se)~^ = i|i(m/n) $(r/s) 

Therefore, i|( is a field isomorphism, 
m/n e Q implies $(m/n) = (me)(ne)~^ e Q'; thus 

$((%) S  Q' . Moreover, every element of Q' is of the form 
(re)(se)""^ where r e Z, and s e N„ r/s e Q and $(r/s)
= (re)(se)~^. Thus Q* c t(Q). Therefore *(Q) = Q ' ,

Let m e Z, then *(m) = t(m/l) = (me)(le)”^
= (me)(e)~^ = (me)(e) = me e Z', hence $(Z) <= Z’, Let 
re e Z' ; then re = (re)(le)~^ = $(r/l) = i|((r) where r e Z.
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13
Thus, Z* c î (z) and therefore $(z) = Z' .

Let m/n, p/q e Q. We may assume that n, q e N, 
m/n < p/q implies mq < np which, hy lemma 1.3, implies 
(mq)e < (np)e, and this in turn implies (me)(qe) < (ne)(pe). 
Also hy lemma 1.5, (ne)~^ > © and (qe)“^ > 0. Thus 
m/n < p/q implies (ne)“^(qe)“^(me)(qe) < (ne)“^(qe)“^(ne)(pe), 
which implies (me)(ne)”^ < (pe)(qe)“^, resulting in 
$(m/n) < 1>(p/q)c Therefore, >lf is order-preserving and the 
proof is finished.

Since Z is order-isomorphic to Z* and Q is order- 
isomorphic to Q*, from this point on we assume, for any 
ordered field ?, that N g  Z c Q c F. Consequently, 0 will 
he used instead of ©, 1 will he used instead of e ,  and m/n 
will he used instead of (me)(ne)“ .̂ The elements of Q, will 
he called rational elements of F, the elements of F - Q, if 
any, will he called irrational elements of F, The well- 
ordering property for the set N of natural numbers says 
that every non-empty subset of N has a least element.
This property also holds when N is considered to he a 
subset of F. We will sometimes use x/y for x»y”  ̂ where 
X ,  y E F. Making immediate use of this, we note that 
a, h e F with a < h, implies a < (a + h)/2 < h.

Definition 1.10: An ordered field F is said to he
an Archimedean ordered field if for each x e F, with x > 0, 
there exists n e IT such that x < n.
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Essentially, E is Archimedean if W is "nnboimded" 

in E . Of the previous examples of ordered fields, R and Q 
are Archimedean. Since Q may he considered a suhfield of 
any ordered field, every ordered field has an Archimedean 
subfield, Hot all ordered fields are Archimedean. To see 
that Q ( x )  is non-Archimedean, observe that n - x < 0 for 
all n e H. Thus there is no n e N such that x < n. In a 
similar manner, using x” ,̂ one can show that R<x> is also 
not Archimedean. It will be seen that Archimedean ordering 
plays an important role in the next chapter. Some of the 
basic properties of an Archimedean ordered field are 
presented in the next lemma.

Lemma 1.11: If E is an Archimedean ordered field
and y, z e E then:

(i) y > 0 and z > 0 implies there exists n e H such 
that ny > z.

(ii) z > 0 implies there exists n e H such that 
0 < 1/n < z.

(iii) y > 0 implies there exists n e N such that 
n - 1 < y < n„

(iv) If y < z then there exists a rational element 
m/n such that y < m/n < z.

Proof : (i) If y > 0 then y~^ > 0. Thus zy"”̂  > 0 
and there exists n e H such that n > zy“ .̂ Hence, ny > z.

(ii) There exists n e H such that nz > 1. Hence
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z > l/n > 0.

(iii) There exists n e IT such that y < n. As IT is 
well-ordered one may choose n to be the smallest such
integer. Then n - 1 ^  y < n»

(iv) There will be no loss of generality in assuming 
that 0 < y < z as the proofs for the other cases would be
based on this one. z - y > 0 so there exists n e IT with
l/n < z - y. Choose m £ IT such that m - 1 < ny < m. Then
m/n < y + l/n, while y < m/n and y + l/n < z. Therefore
y < m/n < Zo

Before considering the structure of an Archimedean
ordered field, we introduce the concepts of interval,
absolute value, and sequences.

Definition 1.12; Let F be an ordered field.
For a, b e F we define :

(i) ]a, b[ = [xlx e F and a < x < b] if a < b,and
call ]a, b[ an onen interval of Fj

(ii) [a, b] = {xlx e F and a < x < b} if a < b,
and call [a, b] a closed interval of F .

Definition l.l5; If F is an ordered field and x e F,
then the absolute value of x, denoted by Ixl, is defined by:

/* X if X > 0Ixl = <
- X  if X  < 0.

These definitions parallel those given for the real 
numbers as do the properties listed in the next lemma.
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Tiie proof of the lemma would be constructed the same as 
that given in elementary calculus and is omitted here ̂

then i
Lemma 1.14: Let ? be an ordered field and x, y e F,

Ci) Ixl 2  0.
(ii) Ixl = 0 if and only if x = Oc

(iii) Ix - jI = ly - xl.
(ivy Ixyl = Ixi-lyl,
(v) Ix/yI = Ixl/lyl, y  / 0„

(vi) If a E F with a > 0 then Ixl < a if and 
only if -a < X  < a; and Ixl < a if and
only if “a < X ^  a„

(vii) Ixl - I y  I < Ix j: yl < Ixl + l y L
(.viii.) I Ixl - lyl I < |x ~ yl „

The definitions 1.15 through 1.21 involve sequences. 
Definition 1.15  ̂ A sequence in an ordered field F 

is a function X whose domain is the set N and whose range 
is contained in F. The value of X at n, X(n), will be 
denoted by x . The sequence will be denoted by X, {x },

-  K )
Definition 1.16 : Let X be a sequence in an

ordered field F. Let n^ < n2 < n:̂  < . . . < n^ <
be any strictly increasing sequence of positive integers. 
Then l.x̂  /k^i ^ sequence and is called a subsequence of X.
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Definition I d ? " A sequence in an ordered
field F is said to converge to an element x of F, if for
every element E F such that |i > 0, there exists an M e K
such that n ^  M implies |x - x^l < |i. x is said to be the
limit of the sequence {x } and one writes lim x = x„

^ n 00

Definition 1.18 : A sequence [x^} in an ordered
field F is said to be a Cauchy Sequence in F, if for every
element  ̂ s F such that p > 0, there exists an M e N such
that n > M and m > M implies lx„ - x„I < p.—  —  n m

Definition 1 1 9  : An ordered field F is said to be
Cauchy Complete if every Cauchy sequence in F converges
to an element of F ,

As noted in the introduction, R is Cauchy Complete
while Q IS not. We show in chapter two that R<x> is
Cauchy Complete.

Definition 1.20; A sequence {x^} in an ordered
field F is said to be bounded if there exists t £ P such
that ix^l < t for all n. n —

Definition 1.2]: The sequence {x^} in an ordered
field F is said to be monotone increasing (decreasing) if
for all n e .N, x_ < x^,, (x^., < x_). A sequence is saidn  —  n +i n + i  —  n
to be monotone if it is either monotone increasing or
monotone decreasing.

The next lemma is a compilation of some of the 
important consequences of these definitions..
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Lemma 1 2 2  : Let and "be convergent se­

quence s in an ordered field F with lim x = x and
n -^00 ^

lim y = Yc Then: n oo
Ii) lim X is uniqueo n ->oo

(ii) If {x } is a subsequence of (x ], then 
k

{x } converges and lim x = x.
k -> 00

(iii) [x^] is a bounded sequence.
(iv) {x^ +_ is a convergent sequence and

lim (x: + y ) = x + y\
n OD

(v) is a convergent sequence and
lim (x y ) = xy. 

n 00

(vi) If y^ / 0 for all n, and y / 0, then
{x^/y^} is a convergent sequence and
lim (x /y ) = x/y. 

n ->0D
(viiJ For all k £ F, {kx^} converges and

lim kx = kx„
n ->00 ^

Proof: Cl) Assume that it is also true that
lim X = z. Let p. c F with p. > 0, then there exist 

n ->00
f B-2 £ N such that n ^  implies |x^ - x| < p/2, and 

n ^  Mg implies Ix^ - zI < p/2. Let M be the maximum of 
and Mg- Then n > M implies
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x - z l  < | x „ - x l  + I z - x l  '—  n  n

But |x was arbitrary? so I x - z I = 0  and x - z.
(ii) Let |i E P with (x > 0, then there exists M e N

such that n > M implies |x^ - xl < |x. is a strictly
increasing sequence in N, hence n̂  ̂> k for each k. Thus
k > M implies Ix - x| < p.. Therefore, lim x = x.

^k k -> œ  ^k
(iii) There exists K e N with n > K implying

Ix_ - xl < 1. But Ix_I - Ixl < |x„ - xl means n > Kn n n ■—
implies Ix^l < Ixl + 1. Let L = maximum {1x^1, IXgI,
Ix^l, .,., Ixg_^|, Ixl + 1}„ Por all n, Ix^l < L, so {x^} 
.is a bounded sequence.

(iv) Let p. E P with p. > 0, then there exists M s N
such that n > M implies I x^ - xl < p./2 and I y^ - y I < p./2.
Thus n ^  M implies I (x^ + y^) - (x + y)| < p,„ Therefore,
lim (x + y ) = X + y„ It may be shown in a similar 

n —> OD
manner that lim (x - y ) = x - y„ 

n “>CD
(v) Ix^y^ - xyl = I(x^y^ - xy^) + (xy^ - xy)I

{y^} is bounded so L may be chosen such that ly^l ^  L for
all n and also so that Ixl < L. If y^ = 0 for all n, then
y = 0 and lim (x y ) = xy. If not, then L > 0, Let 

n 00
p. £ F with p. > 0, then choose M so that n > M implies both 
Ix^ - xl < P-/2L and ly^ - yl < p./2L, Then n ^ implies

' V n  - < s r -  * Tl
Hence I x y  - xy  I < p. for n > M, and lim (x y ) = xy.

n ->00
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(vi) This will follow directly from Cv) once one

has shown that lim (l/y„) = l/y. y / 0 means lyl/2 > 0.
n 00

hence there exists such that n > implies
ly - y^l < lyl/2. Recalling that lyl - ly^l ^  ly - y^l ,
we conclude that n >. implies lyl/2 < ly^l . Let |i e R
with p. > 0, then there exists Mg e R such that n > Mg
implies ly^ - y I < p.|yl /2. Let M he the maximum of M^ and
M q , Then n > M implies

7  , , , i y  -  7 n l 2|y -  y ^ |
Ii/^n - = lÿ̂ jTjr̂  — g s —  •

Thus n > M implies I l/y„ - l/yl < p.. Hence, lim (l/y ) = l/y,n 00
(vii) This is a direct consequence of (v) with 

y^ = k for all n.
Every Archimedean ordered field may be considered a 

subfield of R, The next lemmas lay the groundwork for the 
proof of this assertion,

T.emma 1.23; If F is an Archimedean ordered field,
then for all a e F there exists a sequence (r^] in % such
that {r^} converges to a.

Proof: By lemma 1.11, for each n e R, there exists
r^ E Q such that a < r^ < a + l/n. Let p e F with p > 0.
Then there exists M e R such that l/M < p. For n > M,
l/n ^  1/M, Hence for n > M, a < r^ < a + l/n a + l/M.
Thus n > M implies Ir^ - a I = - a < l/M < p. That is,
lim r = a, 

n 00 ^
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Lemma 1.24 : If F is an ordered field and

converges to x in F, then {x^] is a Cauchy sequence in F.
Proof: Let p. e F with p. > 0, then there exists

M e N such that n > M implies Ix^ - xl < p./2. Since 
Ix^-x^l < | x ^ - x i  + | x - x ^ | ;  n, m > M  implies that 
Ix^ - x^l < p.. Hence, [x^] is a Cauchy sequence.

Lemma 1.23: If F is an ordered field and (r^] is
a Cauchy sequence in F where r^ e Q for all n, then [r^] 
is a Cauchy sequence in R and hence {r^} converges in R.

Proof: Let p. e R with p > 0, R is Archimedean;
so there exists M e N such that 0 < l/M < p. But l/M £ Q, 
hence l/M £ F . There exists K e R such that n, m > E 
implies Ir^ - r^| < l/M in F. Thus n, m > E implies 
Ir^ - r^l < l/M in Q, considered as a subset of R, Con­
sequently, n, m > E implies Ir^ - r^l < p in R. Thus 
{r^] is a Cauchy sequence in R, and as R is Cauchy Complete, 
[r^l converges in R.

LeTTi-ma 1 .26: Let F be an Archimedean ordered field
and [r^] be a sequence with r^ £ Q for all n. Then [r^] 
converges to 0 in F if and only if [r^] converges to 0
in R.

Proof : Suppose {r^} converges to 0 in F. Let
p £ R with p > 0. Since R is Archimedean, there exists 
M E R such that 0 < l/M < p. l/M £ Q implies l/M £ F. 
Hence there exists E e R such that n > E implies
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Ir̂ l < l/M in ?. As e Q for all n, n > iC implies
Ir̂ i < l/M in R, which in turn implies Ir̂ l < ix in R.
Thus Ir^} converges to 0 in R.

The converse is shown similarly since P is 
Archimedean and Q = P.

Lemma 1.27; Let P be an Archimedean ordered field.
Let {r^} and {s^} be sequences in Q. Let a, b e P with
a < b, and suppose that in P, lim r = a and lim s = b.

n 00 n -> 00
Then in R, lim r < lim s .n -> œ  n->oo

Proof: By lemmas 1.24 and 1.2$, {r^] and {s^}
converge in P implies (r^) and [ŝ ]̂ converge in R. In P,
a < b implies (b - a)/4 > 0. Choose M e N such that n > M
implies both Ir^ - a| < (b - a)/4 and Iŝĵ - "bl < (b - a)/4.
Then n >. M implies r_ < a + (b - a)/4 sued b - (b - a)/4 < s ,n n
But a + (b - a)/4 < (a + b)/2 < b - (b - a)/4, hence by 
lemma 1.11 there exist p, q s Q such that

a + (b - a)/4 < p < (a + b)/2 < q < b - (b - a)/4. 
Thus, n ^  M implies r^ < p < q < s^ in P. As a result, 
n > M implies r_ < p < q < s_ in R. Thus in R,JQ XL

lim r <2 p < q ^ lim s . That is, lim r < lim s . n - > ®  n -i>oo n -> oo n ->oo

Lemmas 1.23-1.27 are used in the proof of the next 
theorem which is a significant result.

Theorem 1.28; Let P be an Archimedean ordered
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field. Then there exists cp:P — > R  such that cp is an order-
preserving field isomorphism of F into R,

Proof: Let a e P, then there exists a sequence
[r^} in Q which converges to a in F. By lemmas 1,24 and
1 .2 5 , (r ] also converges in R. Let lim r = a’ in R.

n ->00
Define cp:F — > R hy cp(a) = a* .

Suppose [r^] converges to a in F and suppose [s^]
also converges to a in F, Then {r^ - s^} converges to 0
in F, Hence {r^ - s^} converges to 0 in R, hy lemma 1.26,
Thus, lim r = lim s in R, as well as F, and cp is 

n OD n CD
well-defined.

Suppose that in F, [r^] converges to a and [s^]
converges to h. Then [r^ + s^} converges to a + b. Thus
in R, cp(a) + cp(b) = lim r + lim s = lim (r + s )

n -^00 n->GD n->oo ^ ^
= tp(a + b)

Also, (r^s^} converges to ab in F, Thus in R,
cpCa)ocp(b) = ( lim r \ / lim s > = lim (r s ) = cp(ab),

n ->(© n ->G0 ^  n -^00
Therefore, cp is a field homorphism.

Suppose cp(a) = cp(b). Let lim r = a and
n OD

lim s = b. Then lim (r - s ) = qp(a) - cp(b) = 0 in R 
n 00 n CD
which, by lemma 1.26, implies lim (r - s ) = 0 in F.

n ->00 ^
That means a = b. Hence cp is one-to-one, and an isomorphism, 

Finally, lemma 1.27 says that cp is order-preserving.
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A topology for an ordered field will be the last 

item to be discussed in this chapter. Let F be an ordered 
field. Let B = {]a, b[ I a < b in F}. For any x e F, 
there exist a, b s F such that a < x < b, and thus 
F = U  {I I l e B } .  Note also that if I, J e B, then either 
i n j E B o r i n j = 0 .  Let 2/ be the family of all unions 
of members of B. A union of members of  ̂ is itself a 
union of members of B and therefore is a member of V . 
Moreover, if U and V are members of ^  and if x e U n V, 
then there exist I, J e B such that x e I = U and 
X  e J c  V. Thus x e i n j ç u n v  and it follows that 
IJ n If is a union of members of B. Therefore t/ is closed 
under the formation of arbitrary unions and finite inter­
sections. The family P is called a topology for F and 
the family B is called a base for the topology P . The 
members of P will be called open sets of F and set comple­
ments of members of P will be called closed sets of F,
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CHAPTER II 

AN INVESTIGATION OF COMPLETENESS

As noted in the introduction» we assume that the 
field of real numbers is a complete Archimedean ordered 
field. The definition of complete depends on which text 
is consulted. Most authors of Advanced Calculus texts 
presuppose the existence of the real numbers and take one 
of several possible characterizations of completeness as 
an axiom. A detailed description of the construction of 
R on the basis of Dedekind cuts is given in Rudin [6],

Working in the general context of an ordered field, 
we investigate eight properties pertaining to completeness, 
showing that six of the eight properties are equivalent, 
and that each of the six implies the other two. Cauchy 
Completeness is one of the properties. The others are 
introduced in definitions 2.3, and 2,7-2.12. We show that 
each of the six equivalent properties implies that the 
ordering is Archimedean and that in an Archimedean 
ordered field all eight completeness properties are 
equivalent.

We conclude with an inquiry into Archimedean ordered 
fields which are "complete". We show that there is essen­
tially only one such field, the field of real numbers.
That is, we show that any complete Archimedean ordered 
field is order-isomorphic to R.
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Definition 2.1: Let 8 be a non-empty subset of an

ordered field F. An element u of F is said to be an unner 
bound of 8 if X < u for all x e 8 , An element v of F is 
said to be a lower bound of 8 if v < x for all x e 8 .

If a set 8 has an upper bound, it is said to be 
bounded above; if 8 has a lower bound, it is said to be 
bounded below. If 8 is bounded both above and below,
8 is said to be bounded. 8 is said to be unbounded if it
either has no upper bound or has no lower bound.

Definition 2.2: Let 8 be a non-empty subset of an
ordered field F. An element u of F is called a least 
unner bound of 8 if u is an upper bound of 8 , and u ^  w 
for all upper bounds w of 8 . An element v of F is called 
a greatest lower bound of 8 if v is a lower bound of 8 , 
and t V for all lower bounds t of 8 .

It is easily shown that if 8 has a least upper
bound, or greatest lower bound, then it is unique. The 
following is a property used very often to characterize 
the real numbers.

Definition 2.3; An ordered field F is said to be 
Least Upper Bound Complete if every non-empty subset of F, 
which has an upper bound in F, has a least upper bound in F, 

The next theorem is an immediate consequence of 
this definition.

Theorem 2.4: If F is an ordered field which is
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Least Upper Boxind Complete, then every non-empty subset of 
F which has a lower bound in F has a greatest lower bound 
in F.

Proof: Let S be a non-empty subset of F and let v
be a lower bound of S, Let T = {y I -y e S}, then T / 0.
If y e T, then -y e S, which implies v  < -y, and hence
y < -V, Thus -V is an upper bound for T and T has a least
upper bound w. If r e S, then -r e T, which implies 
-r < w and in turn -w < r. Thus -w is a lower bound for
S. Let X be any lower bound for S, then by the argument
above, -x is an upper bound for T. Hence, w < -x and 
X  < -w. Therefore, -w is the greatest lower bound of S.

Definition 2.5: Let J be a non-empty subset of an
ordered field F. An element x e F is said to be a limit
point of J if for every p. E F with p. > 0, there exists
y E J such that 0 < |x - y| < p.,

A limit point is sometimes called a "cluster 
point" or an "accumulation point". It should be noted 
that X is a limit point of J if and only if for every 
p. E F with p > 0, there exists y e F with y / x, such that
y e  i n  J, where I = ]x - p, x + p[.

Definition 2.6: In an ordered field F the family
{]c^, d^C I a e A} of open intervals is said to be a 
covering by open intervals of the closed interval [a, b], 
if for each element x e [a, b], there is a e A such that
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z e ]c , d [. That is to say, [a, b] = U ]c , d C.“ “ asA “ “

We now list, in definitions 2.7-2,12, the remaining 
properties which describe the various notions of complete­
ness.

Definition 2.7; An ordered field F is said to
satisfy the Bolzano-Veierstrass Set Property if every
bounded infinite subset of F has a limit point.

Definition 2.8: An ordered field F is said to
satisfy the Bolzano-Weierstrass Sequence Property if
every bounded sequence in F has a convergent subsequence.

Definition 2.9: An ordered field F is said to
satisfy the Bounded Monotone Sequence Property if every
bounded monotone sequence in F is convergent.

Definition 2.10: An ordered field F is said to be
disconnected if there exist open sets A and B of F such
that A / 0, B / 0, A n B = 0, and A U B = F. If F is not
disconnected, then F is said to be connected.

Definition 2.11: An ordered field F is said to
satisfy the Heine-Borel Covering Property if each covering
by open intervals of a closed and bounded interval contains
a finite subcovering of that interval. That is, if
{1^ I a e A} is a collection of open intervals of F and
[a, b] 2  U I ,  then there exist I for j = 1 , 2, ..., naeA ® ®j

nsuch that [a, b] c u, I .«j
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Definition 2.12; An ordered field ? is said to 

satisfy the Nested Interval Pronertv if when (I^] is a 
sequence of closed and bounded intervals in F which is 
nested, in the sense that 2  ^2 —  * * * 2 . E  ^^+1 —  * *
then the intersection of the intervals is non-empty.

The six properties specified in definitions 2.^ and 
2 .7-2,11 are equivalent and imply that the ordering is 
Archimedean. Before showing this, we take a look at a few 
examples,

A verification that E is Least Upper Bound Complete 
may be found on page 11 of Endin's book [6]. That E 
satisfies the other seven properties as well will become 
apparent later in this chapter. The field Q of rational 
numbers is a standard example of a field which is neither 
Least Upper Bound Complete nor Cauchy Complete.

E<x>, introduced previously, is an example of an 
ordered field which is Cauchy Complete but not Least Upper 
Bound Complete. We will show that every ordered field 
which is Least Upper Bound Complete is Archimedean, hence, 
E<x> can not be Least Upper Bound Complete. But first 
we proceed to show that E<x> is Cauchy Complete, The 
following lemma will be needed.

CD .
Lemma 2,l3: If , S d, x is an element of E<x>,— ...— k=—oo k

then I d^lx is also in E<x>, and
00 CO

*k = - 0 D \ ^  * ^  k=-0D *
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oo VProof: Clearly, if  ̂R<x>, then

00 ,
lc=?oo e H<x>.

If dĵ  = 0 for all k, the lemma obviously holds. So 
we may assume / 0 for some k. Let r he such that k < r 
implies d^ = 0 and d^ / 0 .

I f  > 0 .  th e n  I = k = L \ ^ -
00 , oo , oo ,

k=-oo ~ k=-oo “ k=-oo ̂  ̂ *
Since, in E, d^ < I dĝ l , and hence I d^l - d^ > 0 , we have

00 . oo ,
k=-oo ̂  - ]c=-oo ~  and the desired inequality
holds.

oo , 00 ,
I f  d ^  < 0 ,  th e n  = k = g d ) - ^ ' ^ '

00 00 ^ 00 
Moreover, - ^.Soo ' k=5ooOd]^l + -
Once again the inequality holds, since in R, -d̂  ̂< Id̂ l̂ , 
and hence I d^l + d^ > 0 .

Theorem 2.14 : E<x> is Cauchy Complete.
Proof: Let [y^] he a Cauchy sequence in E<x>,

oo ,
''Ith = k = § o o ® n , k ^  •

Let 6 e E with 6 > 0 and for each integer k,
let 6^ = 6x^ in R<x>. Por each integer k, since 6^ > 0
and (y^l is a Cauchy sequence in R<x>, there exists an

e E such that n, m ̂  implies |y^ - y^| < 6^, This
means that for n, m > H, and j < k, la . - a  .1 = 0X n, J m, J
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'®n,k - ^m.k' <
6 was an arbitrary positive element of E, so for

each, integer k, {a , } is a Cauchy sequence in E. SinceH f K.
E is Cauchy Complete, for each k there exists b, e E,

œsuch that lim a^ , = b, . Let b = , S ^ b , x  . We show
n -t>0D ^ ^

that b e E<x> and lim y = b.
n ->00 ^

Since for a given k, there exists such that
n, m > M, and j < k imply la . - a .1 - 0 , n > H, and
j < k imply a . = a^ y^ e E<x> implies there exists» u k^ k
an r such that for j < r, a,̂  . = 0. Let t be the minimum

of r and k, then j < t and n > M, imply a . = 0. Thus forJx H 9 J
j < t, b. = 0. Hence b e E<x>.J

Given |i e E<x>, with > 0, there exists an integer s 
such that ^̂ k=-oo *̂ k̂  where = 0 for k < s and > 0 .
As noted previously, there exists M such that n > M and8

> M Sk  < s imply a , = a,̂  , . But lim a = b, , so n  > Mn , x  n^fK  n  -> 00 ^
and k < s imply b^^ ^ '̂n k  ” k* Moreover, since

lim a^ ^ = b _ , and p > 0, there exists K  such that n  > K 
n  ^ 0 0  ® ®
implies la^ g - < p.^.

00 V 00 ,
- k=5(P '^n.k - ^ k ' ^  ' k . 5 œ  (t^k - l®n,k ‘ ^ k ' '

Let L  be the m a x i m u m  of and K. If n  > L  and k  < s, thena
t̂ k = °* ^n.k ' ^k' that is, - b^l = O; and
p_ - la - b I > 0, Thus for n  > L, the first non-zeroS H ̂ o &
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00 ^coefficient in , 2^  (m-i - I - "b, I )x^ occurs at k = sk=—00 k n,k k

and is positive in E. Hence, the expression itself is
positive in R<x>. That is, n >. L implies 

00 , 
k=?oo l^n,k - ^k^ ' < ^  lemma 2.13,

00 , 00 ,
= 'k.?oo‘̂ ®n,k - V ^ '  ^  k=?oo '®n,k " '’k'^ < »*>

for n > L. Thus Cy^} converges to b, and R<x> is Cauchy
Complete.

Upon investigating the relationships between the 
various types of completeness, we find that our investi­
gation bears little fruit if the ordering is not Archi­
medean. In theorems 2.17-2.22 we show that most of the 
notions of completeness do indeed imply that the field is 
Archimedean ordered. We precede these with an alternate 
criterion for Archimedean ordering.

Theorem 2.13: An ordered field F is Archimedean if
and only if the sequence {l/n} converges to zero.

Proof: Suppose F is Archimedean, Let e F with
M. > 0. Then by lemma 1.11, there exists M e H such that 
l/M < p.. If n > M, then l/n < l/M; so n > M implies 
I l/n - 0 1 = l/n < p.. Thus [l/n} converges to zero.

Suppose [l/n} converges to zero. If x e F with 
X > 0, then l/x > 0, and there exists M e ÎT, such that 
n > M implies l/n < l/x. In particular, l/M < l/x; so 
X  < M and F is Archimedean.
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Corollary 2.16; If is a strictly increasing

sequence of positive integers in an Archimedean ordered 
field F, then { )  converges to zero.

Proof : {l/a^] is a subsequence of [l/n].

Theorem 2.17: If F is an ordered field which is 
Least Upper Bound Complete, then F is Archimedean ordered, 
and hence the set N has no upper bound in F.

Proof : Assume F is not Archimedean ordered. Then
there exists x e F such that n < x for all n e N. x is an
upper bound for N so N has a least upper bound in F; call
it t, n ^  t for all n e N. But n + 1 e W for all n e Nj
so n + 1 < t for all n e N, and n ^  t - 1 for all n e N.
That is, t - 1 is an upper bound for Uj but t - 1 < t and
this is contrary to t being the least upper bound for N, 
Therefore, F is Archimedean ordered.

Theorem 2,18; If F is an ordered field which 
satisfies the Bounded Monotone Sequence Property, then F 
is Archimedean ordered.

Proof : Assume F is not Archimedean ordered. Then
there exists x e F such that n < x for all n e N. Thus
the sequence [n] is a bounded monotone sequence and
converges, say to t. Note that if [y^] is a monotone
increasing sequence and lim y = s, then y ^  s for all

n ^  ®  ^ ^
n. Hence n t for all n.

Since [n] converges to t, there exists M such that
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n ^  M implies In - t! < 1 . Thus t - l < n < t + l  for
n > M. This means t < n + 1 for n > M and contradicts the
note above. Therefore, ¥ is Archimedean ordered.

Theorem 2,19: If F is an ordered field which
satisfies the Bolzano-Veierstrass Sequence Property, then
F is Archimedean ordered.

Proof: Assume F is not Archimedean ordered, then
as before, the sequence {n} is bounded. Hence there exists
{n, 1 a convergent subsequence of [n], Let lim n, = t.
^ k 00 ^

As {n^] is monotone increasing, n^ ^  t for all k. Hence, 
n < t for all n e N. For if there exists M e H such that
M > t, then n > M implies n > t. In particular, since
nĵ  > M, > t.

There exists K such that k >, E implies" In^ - 11 < 1 .  
That is, t - l < n ^ < t  + l for k > K. Thus t < n^ + 1 
for k > E, But + 1 e IT and we have a contradiction. 
Therefore, F is Archimedean ordered.

Theorem 2.20: If F is an ordered field which
satisfies the Bolzano-Weierstrass Set Property, then F 
is Archimedean ordered.

Proof: Assume F is not Archimedean, Then H is
bounded in F. Since N is infinite, IT has a limit point
t e F. Let I = ]t - 1/2, t + 1/2[. If x e I, then
t - 1/2 < X < t + 1/2. Hence x - 1 < t - 1/2 and
t + 1/2 < X + 1. Thus I n IT may consist of at most one
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element„ If t e N, then I n N = {t] and we have a contra­
diction, If t N, then either I H E = 0 which is contrary 
to t being a limit point, or I n N = [n} where n / t. In 
the latter case, let 6 = It - nl/2 , then & > 0 . Let 
J = ]t - 6 , t + 5[. J c= I with n 0 J. Hence J H E = 0,
and we again have a contradiction. This exhausts the
possibilities. Therefore, P is Archimedean.

Theorem 2„2l: If P is a connected ordered field,
then P is Archimedean ordered.

Proof : Assume P is not Archimedean ordered.
Let S = {x I X e P and x is an upper bound for E} and let
T = P - S „  8 / 0 as P is not Archimedean, T / 0 as E = T.
S U T = P and S f1 T = 0,

Let X e S and consider the open interval 
I = ]x - 1 , X + 1C. Let y G I. If y 0 8 , then there 
exists n e E such that y < n. x - 1 < y implies x - 1 < n 
and X < n + 1. But n + 1 e E, so this contradicts the 
fact that X e 8 . Thus I c 8 and 8 is an open set.

Let z e T and consider J = ] z - 1 , z + l [ .  Let 
w e J. z e T implies that there exists n e E such that 
z < n. Thus z + 1 < n + 1 and since w <  z + 1, w < n +  1. 
n + l e E |  s o w e T  and J 5  T. Thus T is an open set.

Hence, P is disconnected.

Theorem 2.22: If P is an ordered field which
satisfies the Heine-Borel Covering Property, then P is
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ArcîiimedeaxL ordered»

Proof : Let z e F with, z > 0„ For each x e [0, z],
let 1% = ]3C - 1/2, X  + 1/2[. Then

[0, z] c u  1 X  e CO, z]].
Hence there exist x-, , X g , . . . , x e [0, z] such that 

n
[0, z] <= .y, I „ We may assume that x, < X g  < ... < ,

~  J  — ±  . ±  d  H

Then 0 s 1^ and x^^g^ - 1/2 < x + 1/2 < x^^^^ + 1/2 
1

for k = l ,  2, o » o , n - l o  For if x^ + 1/2 < x^^^ - 1/2,
then we have 0 ^  x^ + 1/2 < and hence Xĵ  + 1/2 e [0 ,z]
We also have x^ + 1/2 ^  x^ + 1/2 for j < k, and

+ 1/2 < Xj - 1/2 for j > k + 1» Hence x^ + 1/2 /
J

for j = 1 , 2 , »»», n which contradicts the fact that 
n

[0, z] c , Therefore, - x^l < 1 for
j

k ~ 1 , 2 , oo., n ~  1 o
Now z e I for some k. Thus z < x, + 1/2. However,Xk X

Xo + 1/2 < Ix^ + 1/2 - Xĵ l + Ix^ - + - » • + 1x2 “ Xj_l

+ IX̂ l̂ o
Hence, z < 1/2 + 1 + 1 + + 1 + 1/2 = k.
Therefore, F is Archimedean.

We now show that the six properties, Connectedness, 
the Bounded Monotone Sequence Property, Least Upper Bound 
Completeness, the Heine-Borel Covering Property, the 
Bolzano-Weierstrass Set Property, and the Bolzano- 
Weierstrass Sequence Property, are equivalent. Moreover,
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each of these properties implies the Nested Interval 
Property and Cauchy Completeness. If it is assumed that 
the field is Archimedean ordered, then the latter two 
properties imply the first six properties. These asser­
tions will be shown as indicated in the following diagram 
of implications. A different diagram, given without proof, 
indicating another method for arriving at these same con­
clusions, may be found in Buck ([2], p. 39l). The numbers 
refer to the theorem where the indicated implication is 
shown„

Connectedness-

2.28

BolzanoWeierstrass
Sequence

T2.27
BolzanoWeierstrass

Set

2.23

2.26

Bounded 
Mono ton e- 
Sequence I2.24
iLeastUpper

Bound
2 !p^

1
Heine <-

2.29 Nested
Interval

2.30

2.31  ___ Cauchy
(with Archimedean Complete 

Order)

Theorem 2.23; If F is a connected ordered field, 
then F satisfies the Bounded Monotone Sequence Property.

Proof : Assume F does not satisfy the Bounded
Monotone Sequence Property. Let [x^] be a bounded 
monotone sequence which does not converge. Assume {x^]
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is increasing»
Let A = {t I t e F and t is an upper bound for },

and let B = F - A. Then A U B = F and A n B = 0. A / 0  
since is bounded» B / 0 since x^ e B for each n;
for if for some k, x^ ^  x̂  ̂for all n, then {x^] converges
to X, »

Let y e B» Then there exists k e N such that y < x^»
Let 6 = Xĵ  - y . Then & e F and 6 > 0» Let
I = ] y -  6 , y + 6 [» I f x e l ,  then x < y + 6 = x̂  ̂and 
hence x e B„ Thus B is open»

Let w £ A» Suppose w t for all t e A» Then 
given |i e F with p. > 0, w - |i is not an upper bound for 
{x^} o Thus there exists M e N such that w - p. < xĵ »
Since [x^] is monotone increasing, n > M implies 
w - p. < x^ < W» Thus n > M implies Ix^ - wl < p.» .That 
is, [x^} converges to w» This is contrary to our 
assumption about [x^]» Hence, there exists z e A such 
that z < W» Let P = w ~ z and let J = ]w - P, w +  PC»
Then x e J implies w - P < x; that is, z < x» Since z is
an upper bound for {x^], x is an upper bound for x^, and
hence x e A» Thus A is open.

Therefore, F is disconnected. The proof when 
{x^3 is decreasing is similar in construction.

Theorem 2,24: If F is an ordered field which 
satisfies the Bounded Monotone Sequence Property, then
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F is Leas t Upper Bound. Complete «

Proof : By theorem 2.18, P is Archimedean. Suppose
S is a non-empty subset of F which is bounded above. Let 
X be an upper bound for S. If x £ S, then x is the least 
upper bound for S and the proof is finished. Suppose 
X ^ S, Then if w £ S, there is an M £ U such that 
M > X - w and hence w > x - M, Thus there is an integer 
k > 0 such that x - (k + l) is not an upper bound for S 
while X - k is an upper bound for S. Let x^ = x - k, 
and let = [x^ - 1 , x^].

Let be the midpoint of If Xg is an upper
bound for S, let I2 = [x^ " Xg]. If Xg is not an upper 
bound for S and S has only finitely many points between 
X2 and x^, then clearly S has a least upper bound in F.
So in the case where %2 is not an upper bound for S, 
assume there are infinitely many elements of S between 
X2 and x^ and let I2 = [X2 , x^]. Either we inductively 
choose a nested sequence of closed intervals
^2. —  ^2 —  “ ° ° 2  2̂1 ^  ^n+1 —  o « o where I^ = [ a^ $ b^] , 
such that each I^ contains infinitely many members of S, 
b^ is an upper bound for S while a^ is not, and
b^ - a^ = 1/2^“^ Î or else the process stops and we have
found a least upper bound for S.

Assuming the former we have x^ - 1 = a^ a^ < a^^^
< b^^^ ^  bn ^  b^ = x^. Thus [a^} is a monotone increasing 
sequence and {b^} is a monotone decreasing sequence. Both
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are botmded, hence they converge in F. However, recall
that h - a = 1/2^“^, Thus, lim b - a = 0, hy 

“ n ->00
corollary 2.16. Therefore, lim a = lim b , and we

n -> 00 n -> CO
let b be their common value. We proceed to show that b
is a least upper bound for S,

If there exists w e S such that b < w, then w - b > 0, 
Thus there exists an M such that n > M implies

Ib^ - bl = b ^ - b < w - b .
That is, b^ < w which is contrary to b^ being an upper 
bound for S, Hence, b is an upper bound for S,

Let z be any upper bound for S, If z < b, then
b - z > 0, Thus there exits K such that n > K implies

I b - a ^ l  = b - a ^ < b - z .
That is, z < a^ which contradicts the fact that a^ is not
an upper bound for S, Hence, b < z and b is the least
upper bound for S, Therefore, F is Least Upper Bound 
Complete,

Theorem 2,25: If F is a Least Upper Bound Complete
ordered field, then F satisfies the Heine-Borel Covering 
Property,

Proof : Let [a, b] be a closed interval in F and
let C = [1^ I a £ A} be a collection of open intervals such
that [a, b] ç  U I , For each a e A ,  let I = ]a , b [,aeA ^ a a a

There exists a e A  such that a e I^,
Let S = {x I X e [a, b] and [a, x] can be covered with a
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finite subcollectioii of C}, 8 / 0  since a e S. b is an
upper bound for 8 so 8 has a least upper bound t, 8ince
a ^  t < b, t E [a, b ] . Thus there exists 6 e A such that
t e o There must exist y e 8 such that a^ < y t , for
otherwise y a^ for all y e 8 and this contradicts the
fact that t is the least upper bound for 8 .

y E 8 implies that there exist I. e C for j = 1 , 2,
n ^oo., n, such that [a, y] c .U, I.. 8ince [y, t] = I. andJ i. J n

[a, t] = [a, y] U [y, t], we have [a, t] c ( Ij) U . 
Thus [a, t] is covered by a finite subcollection of C, 
and t e 8 o

Either t = b or t < b. I f t < b ,  then t e ]a^, bĝ [
implies there exists z e [a, b] such that t < z < b^.

n
Hence [a, z] c ( .U, I.) U Ic, and z E 8 . This is contraryU U
to t being an upper bound for 8 . Thus t = b, and [a, b] 
is covered by a finite subcollection of C„ Hence, E 
satisfies the Heine-Borel Covering Property.

Theorem 2.26: If P is an ordered field which
satisfies the Heine-Borel Covering Property, then F 
satisfies the Bolzano-Weierstrass 8 et Property.

Proof: Suppose F does not satisfy the Bolzano-
Weierstrass Set Property, Then there exists a bounded 
infinite set 8 c F which has no limit point, 8 is bounded 
implies that there exists a closed interval [a, b] such 
that 8 Ç  [a, b]. Let x e [a, b], Since x is not a limit
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point for S, there exists p e F with > 0, such that if 

= ]x - ji, X + p[, then D 8 contains at most the 
element x„

Let C = I X  e [a, b]]. Then [a, b] ç  U .
xe[a,b]

By the Heine-Borel Property, there is a finite subcollec­
tion D of C such that [a, b] ç  U {1^ | I D},

nLet D = {I,, Ip, ..., 1 ]. Then since [a, b] = .U. I .XL J X Jnand 8 ç  [a, b], we have 8 ç  .U. I..d Jn n
Thus 8 = 8 n ( I .) = .U, (8 n I J.J - I  Ü J - I  J

By construction, for each j, 8 A I. contains at most one
o

element. Hence 8 contains at most n elements. This 
contradicts the fact that 8 is infinite. Thus, F does 
satisfy the Bolzano-Veierstrass Set Property,

Theorem 2.27; If F is an ordered field which
satisfies the Bolzano-Weierstrass Set Property, then
F satisfies the Bolzano-Weierstrass Sequence Property.

Proof : Let (x^] be a bounded sequence in F. If
8 - {x^ I n e N} is a finite set, then there exists r e F
such that x^ = r for infinitely many n, and we can extract
a subsequence {x_ 3 of fx 1 such that x_ = r for all k„

k k
Hence, {x } converges to r.

^k
If 8 is infinite, then 8 has a limit point y„ Let

n-, be the least positive integer such that 0 < |x - yl < 1X n^
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Having chosen n^, n^, . ., n^, choose follows;
let 6^ = minimnm [I - yl» l/(k + l)|1 = 1 , 2 , ..., k},
and let n^^^ be the least positive integer such that
0 < Ix - yl < à,. By the choice of n-, , n^» . . .,^k+1 ^ i ^

.. [n^] is a strictly increasing sequence of positive 
integers.

Thus we have defined inductively a subsequence {x 3
^k

of {x }, such that 0 < Ix - y I < l/k, for each k. Since n
F satisfies the Bolzano-Weierstrass Set Property, F is 
Archimedean„

Let p. G F with p. > 0. There exists K e N such that
k > K implies l/k < p. Consequently, k > K implies
0 < IX - yl < p. Hence [x ] converges to y and the 

^k ^k
proof is complete.

Theorem 2.28: If F is an ordered field which
satisfies the Bolzano-Weierstrass Sequence Property, then 
F is connected.

Proof: Suppose F is not connected. Then F = A U B
where A and B are non-empty, disjoint, open sets.

Let Xĝ  G A, and Xg s B, We may assume x^ < X2 ,
Let x^ = (x^ + Xg)/2. If x^ G A, let 

x^ = (xj + X2 )/2 ; and if x^ g B, let x^ = (x^ + x^)/2. 
Having chosen x^, X2 , ,.,, x^, for n > 3, such that if 
x. G A with 1 < j < n and x, e B with 1 < k < n, thenJ - U - jj; - -
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Xj < x^; choose x^^^ as follows:

Let J - maximiom [x. I x . e A for j = 1 , 2, ..., n],Ü u
and z = minimum {x. I x. e B for j = 1 , 2 , n}.d û

^B < ^B+1 < '̂ B-
for 1 < j < n, Xj e A implies Xj < x^^^; and for 1 ^  k < n,
Xĵ  E B implies x^^^ < Moreover, if x^ e A with
1 d < ^ + 1 and x̂  ̂e B with 1 < k ^  n + 1, then x^ < x̂ .̂ 

Thus we obtain the sequence [x^], bounded below by 
x^ and above by Xg, with these properties:

(1) If Xj G A with 1 ^ d ̂  n and x^ G B with
1 ^  k n, then x^ < x^.

(2) If X. G A with 1 ^  d < - 1* then x. < x .
J  J  I I

(3) If x^ G B with 1 ^  k < n - 1, then x^ < x^.
By hypothesis, {x } has a convergent subsequence {x }„n njj.
Let lim x = r. 

k ”5> 00 k
We may assume r G A. Since A is an open set, there

exists 6 G F with 6 > 0, such that i f I = ] r - 6 , r + 6 [,
then I c A. {x } converges to r implies that there

^k
exists M E N  such that k > M implies x 6 I. In particu-

^k
lar, x^ G I; so x e A.

^M ^M
Consider J  = C d  I d  > and x^ g A}. J / 0 since

n, > k > M implies x_ g A, Let t be the least elementk -
in J. Then x^ = + z^_^)/2 where
yt_i = maximum {x^ I x^ e A for j = 1 , 2 , t - 1 }, and
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= minimum {x. I x. e B for j = 1 , 2, t - l},V J

Recall that ^t-1 that for 1 < j <
X , e A implies x . < x . Thus hy definition of t and J J ĵij
^t-1* have = x^ . Hence we have

a n d  < z^_^.

z.  ̂ e B and x e I ^ A impliesU J_ Hpj

r  - ^ <  r  6 ^  z ^ _ ^ .

In
Thus x^ > ((r - 6 ) + (r + 5))/2 = r„

Since x. e A, for n > t and x^ e A, we have x_ > x..t —  n n —  t
particular, for k > t, x„ > x.. Hence, lim x^ > x..

^ k ^ c o “k “ ^
But r ^  x^ > r is impossible.

Therefore, F is connected.

Theorem 2.28 completes the circle of implications 
needed to show the equivalence of the first six properties 
referred to on page 37. We now proceed to show that the 
Rested Interval Property and Cauchy Completeness are 
implied by these and that with the assumption of Archi­
medean ordering all eight are equivalent.

Theorem 2.29: If P is an ordered field which
satisfies the Bounded Monotone Sequence Property, then 
F satisfies the Rested Interval Property.

Proof : Let {I^] be a nested sequence of closed
intervals with Iĵ  = [a^, b̂ ]̂ for each k. Then
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a.̂  ;< ^  ^k+1 ^  ^k+l —  —  ^1 k “ 1 » 2 , 3, » « »

{a^} is a TDoianded monotone sequence in P and hence con­
verges j let lim a, = y.

k 00 ^
Suppose there exists an M such that j jé Since

(a^J is a monotone increasing sequence, a^ ^  y for all k.
Thus y Ipj implies < y. However, for k > M;
so a, < h^ for k > M. Thus lim a, ^  h^, which gives 

^ k -e>oo ^
y < bĵ  < y» which is impossible» Therefore, y e for

00
all k; that is, y e

Thus, P satisfies the Nested Interval Property,

Theorem 2,30: If P is an ordered field which
satisfies the Nested Interval Property, then P is Cauchy 
Complete »

Proof: If {x^] is a sequence in P for which there
exists an M e N such that n > M implies x^ = x^, then
[x^} will be called an essentially constant sequence.

Case 1 : If the only Cauchy sequences in P are
essentially constant, then these sequences converge, and 
P is Cauchy Complete,

Case 2: Suppose there exists a Cauchy sequence
{x^} in P which is not essentially constant,

(a ) We show P has a sequence of positive 
elements which converges to zero.

Consider the given sequence [x^}. Por each n, let 
^n " *^n+l “ ^n*‘ y^ > 0 for all n. {x^} is not
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essentially constant implies that for every M e U there
exists an n > M such that that is, such that

/ 0. For otherwise, = x^ for all n > M + 1,
Hence, x^ = x̂ ^̂  ̂for all n > M + 1.

Let n^ he the least positive integer such that
^n ^ Having chosen n^, n2 » ..., n̂  ̂such that y^ / 0

1 j
for j = 1, 2, ,.., k, let n^^^ he the least positive
integer greater than n, such that y_ / 0. Thus weK ^k+1
obtain a sequence {y_ } of positive elements of F,^k

Let p. G F with > 0. There exists L such that
n, m > L implies Ix^ - x^l < p-. In particular, n > L
implies Ix^^^ - x^l < p.. Note that n̂  ̂>, k for all k.
Hence, I y - Ol = ly_ I = Ix , - x I < p- for k > L.
Therefore, lim y =0. k -> 00 k

(b ) Let {y^] he any Cauchy sequence in F,
We show that [y^] converges. We use the fact that if 
c ^ h then [a, h] fl [c, d] is the closed interval 
[max {a, c], min {h, d]].

By (a ), F has a sequence (6^) such that 6^ > 0 for
each n and [6^] converges to zero. Let he least 
positive integer such that n ^ implies I <
Let a^ = y^^ - 6^, h^ » ŷ ^̂  + 6^, and = [a^, h^].

Assume that closed intervals a Ig 2 ••• 2 *
and positive integers Mg < ... ^ Mj, have heen defined,
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such that for each k, 1-̂  = [a^^ h^], - a^ < 26^, and
n > implies e Define and I a s  follows:
Choose M ,.T > M . such that n > M .., implies J+1 —  Ü —  Ü+1

ij+1 ' Ij " - ̂ j+1 '
If n > M. , , then n > M . which implies y e I ..

d d ^  d
Moreover, n > M . implies

^ " ^j+1 ' * ^j+1 '̂

Thus n > Mj+i implies y^ e Let ^j+1^ '
Then - a^^^ < 26^^^. Moreover, E  Ij.

Thus we obtain a nested sequence of closed intervals
—  ^2 —  *'* 2  Ij 2  .•.» and an increasing sequence of

positive integers M^ < M2 < ... ^  M^ ^ ..., such that for
each j , I. = [a., b.], b. - a. < 2 5 ,  and n > M. implies

d d d d d d d

^ Ij-
Since F satisfies the Nested Interval Property,

00 CD
.n, I. / 0. Let y e .Q, I.. Ve show {y„} converges to y . j - r j  j - r j  n

Let H- G F with > 0, Since (6^^ converges to zero,
there exists k such that 5^ < pi/2 . n > Mĵ  implies y^ e I^.
y E Ij implies y e I^. Hence, n > M^ implies
ly„ ■ y* ^  ^k " ^k ^  ^^k < ^tias lim y = y.^ k k k  n -> 00 ^

Therefore, F is Cauchy Complete.

Theorem 2.3l; If F is an Archimedean ordered field 
which is Cauchy Complete, then F satisfies the Heine-Borel
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Covering Property,
Proof: Let J = [a, b] and let C = [I^ | a e A} be

a collection of open intervals such, that J U IaeA
Assume that no finite subfamily of C covers J,

Let = [a^, b^] be one of the two subintervals, 
[a, (a + b)/2] or [(a + b)/2 , b], such that can not be
covered by a finite subfamily of C; since [a, b] is the 
union of the two subintervals, this has to be true for at 
least one of them. Then 5  J and b^ - a^ = (b - a)/2.

Assume = [a^^ b^] have been defined for 
k = 1 , 2 , ..., n with b^ - a^ = (b - a)/2^, and Ĵ si+i S  
for k = 1 , 2 , n - 1 such that for k = 1 , 2 , ..,, n,

can not be covered by a finite subfamily of C. Let 
be one of the two subintervals, [a^, (a^ + b^)/2] or 
[(a + b )/2, b ], such that J . can not be covered by

■J * JbX a * A A * —L

a finite subfamily of C. Then c and
^n+1 “ ^n+1 = ~ a)/2^

Thus we obtain inductively a nested sequence of
closed intervals ( ,  such that for each n, = [a^, b^]
where b^ - a^ = (b - a)/2°', and can not be covered by
a finite subfamily of G.

For a fixed k; n, m > k implies b^, b^ e hence
^^n “ ^m^ —  ~ a)/2^,

F is Archimedean ordered, so by corollary 2 .l6 ,
we have lim 1/2^ = 0. Hence, lim (b - a)/2^ = 0, 

k 00 k -> CD
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Let n e F with p. > 0. Then there exists K such that

(b - a)/2^ < p.. Thus n, m > K implies I b^ - b^l < p..
Therefore {b^} is a Cauchy sequence and hence converges.
Let y = lim b . Since a ^  b < b for all n, y e [a, b]. 

n -> 00
Consequently there exists = I c ^ t  d ^ [  e C such that 
y e . Let 6 = minimum {Ic^ - y I, Id^ - y I]. Then 6 > 0
and hence there exists L e H such that n > L implies
lb„ - yl < 6/2 .n

We know that lim (b - a ) = lim (b - a)/2^ = 0 ;
n 00 n 00

so there exists M e N such that n, m ^  M implies 

' ■̂ n - ®n <
Let S be the maximum of L and M. n > S implies

ly -  a^l <  ly -  b^l + " ̂ n ^  <  ^ »  and I y -  b^l <  6/2 .
Thus n > S implies [a , b ] <= ]c , d [. That is [a , b_]n i i " " c x o L  n i l
is covered by a finite subfamily of C, namely one interval. 
This is a contradiction. Thus there does exist a finite 
subfamily of C which covers J, Therefore, F satisfies the 
Heine-Borel Covering Property.

One should note that the hypothesis of Archimedean 
order in theorem 2.3l is necessary. Recall that we showed 
earlier that the Heine-Borel Covering Property implies 
Archimedean order, and that R<x> is a non-Archimedean 
ordered field which is Cauchy Complete.

If F is an Archimedean ordered field which satisfies 
any one of the eight completeness properties specified on
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page 57, then F is called a complete Archimedean ordered 
field. The final result of this paper is given in the next 
theorem which characterizes the complete Archimedean 
ordered fields.

Theorem 2.32; Let F he a complete Archimedean
ordered field. Then there exists qp:F — > R  such that cp
is an order-preserving field isomorphism of F onto R.

Proof: By theorem 1.28, there exists cp:F — > R
such that cp is an order-preserving field isomorphism of F
into R. We have only to show that q> is onto.

Recall that cp is defined hy cp(a) = lim r where
n -e> CD

{r^} is a sequence in Q which converges to a in F . If 
s e Q, then clearly cp(s) = s.

Let y G R and let S = {x I x e F and cp(x) < y} .
R is an Archimedean ordered field so by lemma 1.11 there
exists s e Q such that s < y. Since cp(s) = s , s e S.
Hence 8 / 0 .

There exists n e N such that y < n. cp(n) = n so 
X e S implies x < n in F. Thus S is a non-empty subset
of F which is bounded above. F is a complete Archimedean
ordered field implies that S has a least upper bound t.
Either cp(t) < y , qp(t) > y, or cp(t) = y .

Assume cp(t)  < y; then there exists a  e Q such 
that cpCt) < a < y. cp(a) = a  implies cp(t) < cp(a) < y.
cp (t)  < cp(a) implies t  < a in F. cp(a) < y implies a e S,
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which implies a < t. Together these give a t < a which 
is impossible. Thus cpCt) > y.

Assume cp (t)  > y ;  then as before there exists P e Q 

such that y < qp(P) < q p ( t ) .  cp(P) < cp (t)  implies P < t. 
t is the least upper bound for 8 implies there exists 
X e 8 such that P  < x < t. Hence cp(P) < (p(x). However,
X e 8 implies cp(x) < y. Thus we have cp(3) < y < cpCP) 

which is a contradiction.
Therefore, cp(t) = y, and cp is onto.

Theorem 2.32 says that up to isomorphism, R is the 
only complete Archimedean ordered field. Equivalently,
R is essentially the only Archimedean ordered field which 
is Cauchy Complete.

In conclusion, here is a summary of the main results 
of this paper. The field Q of rational numbers may be 
considered a subfield of any ordered field. An Archi­
medean ordered field is order-isomoiphic to a subfield 
of the field R of real numbers. The six properties; 
Connectedness, the Bounded Monotone 8 equence Property,
Least Upper Bound Completeness, the Heine-Borel Covering 
Property, the Bolzano-Veierstrass 8 et Property, and the 
Bolzano-Veierstrass Sequence Property, are equivalent.
A complete Archimedean ordered field also satisfies the 
Nested Interval Property and Cauchy Completeness. These 
last two properties are equivalent to the first six if
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the field is Archimedean ordered. However, there do 
exist non-Archimedean ordered fields which are Canchy 
Complete, R<x> is such a field. Finally, a complete 
Archimedean ordered field is order-isomorphic to R.
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