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From Lecture 1

• PID-control

• State-space model of plant
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Linearization



Linearization - Why?

Many systems are nonlinear. However, one can approximate them with

linear ones. This to get a system that is easier to analyze.

A few examples of nonlinear systems:

• Water tanks (Lab 2)

• Air resistance

• Action potentials in neurons

• Pendulum under the influence of gravity

• ...
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Linearization - How?

Given a nonlinear system ẋ = f (x , u), y = g(x , u)

1. Determine a stationary point (x0, u0) to linearize around

ẋ0 = 0 ⇔ f (x0, u0) = 0

2. Make a first order Taylor series expansions of f and g around

(x0, u0):

f (x , u) ≈ f (x0, u0) +
∂

∂x
f (x0, u0)(x − x0) +

∂

∂u
f (x0, u0)(u − u0)

g(x , u) ≈ g(x0, u0) +
∂

∂x
g(x0, u0)(x − x0) +

∂

∂u
g(x0, u0)(u − u0)

Notice that f (x0, u0) = 0 and let y0 = g(x0, u0)

3. Introduce ∆x = x − x0, ∆u = u − u0 and ∆y = y − y0

4. The state-space equations in the new variables are given by:

∆̇x = ẋ − ẋ0 = f (x , u) ≈ ∂

∂x
f (x0, u0)∆x +

∂

∂u
f (x0, u0)∆u = A∆x + B∆u

∆y = g(x , u)− y0 ≈
∂

∂x
g(x0, u0)∆x +

∂

∂u
g(x0, u0)∆u = C∆x + D∆u
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Example - Linearization

Example
The dynamics of a specific system is described by

ẋ1 = x2

ẋ2 = −x4
2

x2
1

+ x1 +
√
u + 1

y = x2
1 + u2

a) Find all stationary points

b) Linearize the system around the stationary point corresponding to

u0 = 3
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The dynamics of a specific system is described by

ẋ1 = x2 = f1(x1, x2, u)

ẋ2 = −x4
2

x2
1

+ x1 +
√
u + 1 = f2(x1, x2, u)

y = x2
1 + u2 = g(x1, x2, u)

(a) Find stationary point for u0 = 3 : (ẋ1 = ẋ2 = 0)

0 = x2

0 = −x4
2

x2
1

+ x1 +
√
3 + 1

y = x2
1 + 32

=⇒ (x10, x20,u0) = (−2, 0, 3)

y0 = g(x10, x20, u0) = 13
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√
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(b) Linearize around stationary point (−2, 0, 3)

∂f1
∂x1

= 0,
∂f1
∂x2

= 1,
∂f1
∂u

= 0,

∂f2
∂x1

= +2
x4

2

x3
1

+ 1,
∂f2
∂x2

= −4
x3

2

x2
1

,
∂f2
∂u

=
1

2
√
u + 1

,

∂g

∂x1
= 2x1,

∂g

∂x2
= 0,

∂g

∂u
= 2u,
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The dynamics of a specific system is described by

ẋ1 = x2 = f1(x1, x2, u)

ẋ2 = −x4
2

x2
1

+ x1 +
√
u + 1 = f2(x1, x2, u)

y = x2
1 + u2 = g(x1, x2, u)

=⇒ (x10, x20,u0) = (−2, 0, 3)

y0 = g(x10, x20, u0) = 13

(b) Linearize around stationary point (−2, 0, 3)

∂f1
∂x1 |{x0, u0}

= 0,
∂f1
∂x2 |{x0, u0}

= 1,
∂f1
∂u |{x0, u0}

= 0,

∂f2
∂x1 |{x0, u0}

= 1,
∂f2
∂x2 |{x0, u0}

= 0,
∂f2
∂u |{x0, u0}

=
1

4
,

∂g

∂x1 |{x0, u0}
= −4,

∂g

∂x2 |{x0, u0}
= 0,

∂g

∂u |{x0, u0}
= 6,
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The dynamics of a specific system is described by

ẋ1 = x2 = f1(x1, x2, u)

ẋ2 = −x4
2

x2
1

+ x1 +
√
u + 1 = f2(x1, x2, u)
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=⇒ (x10, x20,u0) = (−2, 0, 3)

y0 = g(x10, x20, u0) = 13

(b) Linearize around stationary point (−2, 0, 3)

f (x , u)

∂x |{x0, u0}
= A =

[
0 1

1 0

]
f (x , u)

∂u |{x0, u0}
= B =

[
0
1
4

]
g(x , u)

∂x |{x0, u0}
= C =

[
−4 0

] g(x , u)

∂u |{x0, u0}
= D =

[
6
]
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The dynamics of a specific system is described by

ẋ1 = x2 = f1(x1, x2, u)

ẋ2 = −x4
2

x2
1

+ x1 +
√
u + 1 = f2(x1, x2, u)

y = x2
1 + u2 = g(x1, x2, u)

=⇒ (x10, x20,u0) = (−2, 0, 3)

y0 = g(x10, x20, u0) = 13

Introduce
∆x1 = x1 − x10, ∆x2 = x2 − x20

∆u = u − u0 ∆y = y − y0

The state-space equations in the new variables are given by:

[
∆x1

dt
∆x2

dt

]
=

[
0 1

1 0

][
∆x1

∆x2

]
+

[
0
1
4

]
u

∆y =
[
−4 0

] [∆x1

∆x2

]
+
[
6
]
u
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Transfer Function



Laplace Transformation

Let f (t) be a function of time t, the Laplace transformation L(f (t))(s) is

defined as

L(f (t))(s) = F (s) =

∫ ∞
0

e−st f (t)dt

Example:

L
(
df (t)

dt

)
(s) = sF (s)− f (0)

Initial values helps to calculate what happens in transient phase!

Assuming that f (0) = f ′(0) = · · · = f n−1(0) = 0 (common assumption

during this course, but not always!!) it has the property that

L
(
dnf (t)

dtn

)
(s) = snF (s)

L
(∫ t

0

f (τ)
de

dτ

)
(s) =

1

s
F (s) (integrator)

See Collection of Formulae for a table of Laplace transformations.
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Example - Transfer Function

Example
A system’s dynamics is described by the differential equation

ÿ + a1ẏ + a2y = b1u̇ + b2u.

After Laplace transformation we get

(s2 + a1s + a2)Y (s) = (b1s + b2)U(s)

which can be written as

Y (s) =

G(s)︷ ︸︸ ︷
b1s + b2

s2 + a1s + a2
U(s) = G (s)U(s)

G (s) is called the transfer function of the system.
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Transfer Function

Relation between control signal U(s) and output Y (s):

Y (s) = G (s)U(s)

G (s) often fraction of polynomal, i.e.,

G (s) =
Q(s)

P(s)

Zeros of Q(s) are called zeros of the system, zeros of P(s) are called

poles of the system.

The poles play a very important role for the system’s behavior.
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From State Space to Transfer Function

For a system on state space form

ẋ = Ax + Bu

y = Cx + Du

the transfer function is given by

G (s) = C (sI − A)−1B + D

Observe: the denominator of G (s) is given by P(s) = det(sI − A), so

eigenvalues of A are poles of the system.
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From Transfer Function to State Space

Can be done in several ways, see Collection of Formulae.

Example
A system’s transfer function is

G (s) =
2s + 1

s3 + 4s − 8

Write the system on a state space form of your choice.
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Three Ways to Describe a Dynamical System

Differential equation

ÿ + a1ẏ + a2y = b1u̇ + b2u

State space

ẋ = Ax + Bu

y = Cx + Du

Transfer function

Y (s) = G(s)U(s) = Q(s)
P(s)

U(s)

G(s) = C(sI − A)−1B + D

Collection of Formulae

L
(

dnf (t)
dtn

)
(s) = snF (s)

x1 = y

x2 = ẏ

...
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Block Diagram Representation



Block Diagram - Transfer Function

When the blocks in a block diagram are replaced by transfer functions, it

is possible to describe the relations between signals in an easy way.

GP
u y

Y (s) = GP(s)U(s)
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Block Diagram - Components

Most block diagrams consist of three components:

• Blocks - Transfer functions

• Arrows - Signals

• Summations

GR GP
U

+
R E Y

−1

where R, E , U, Y are the Laplace transformations of the reference r(t),

control error e(t), control signal u(t), and output y(t), respectively.
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Determine Transfer Function From Block Diagram

GR GP
U

+
R E Y

−1

Y = GPU, U = GRE , E = R − Y

From the equations above the transfer function between r and y is

Y =
GPGR

1 + GPGR
R
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Example - Transfer Functions

Example
Two systems, G1 and G2, are interconnected as in the figure below

G1

G2

+

+

u y

Compute the transfer function from u to y , Gyu.
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Transient Response



Solution to State Space Equation

Given a system on state space form

ẋ = Ax + Bu

y = Cx + Du

The solution, y(t), is then given by

y(t) = CeAtx(0) + C

∫ t

0

eA(t−τ)Bu(τ)dτ + Du(t)

Initial state,

uninteresting except

when the controller is

initialized

Weighted integral of

the control signal,

interesting part

Direct term, often

neglectable in

practical systems
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Impulse Response

Shows how the system responds when the input is a short pulse, i.e., a

Dirac function

u(t) = δ(t)

The Laplace transformation is

U(s) =

∫ ∞
0

e−stδ(t)dt = 1

Hence

Y (s) = G (s)U(s) = G (s)

Not so common in technological applications, can we think of other

applications?
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Example - Impulse Response

Let the transfer function of the system be:

G (s) =
2

s2 + 3s + 2

−2 0 2 4 6 8 10

0

0.2

0.4

0.6

t

y
(t

)

−2 0 2 4 6 8 10
0

0.5

1

t

u
(t

)
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Step Response

Shows how the system responds when the input is a step, i.e.,

u(t) =

{
1 t ≥ 0

0 t < 0

The Laplace transformation is

U(s) =

∫ ∞
0

e−stu(t)dt =

∫ ∞
0

e−stdt = −1

s

[
e−st

]∞
0

=
1

s

Very common in technological applications
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Example - Step Response

Let the transfer function of the system be:

G (s) =
2

s2 + 3s + 2

−2 0 2 4 6 8 10
0

0.5

1

t

y
(t

)

−2 0 2 4 6 8 10
0

0.5

1

t

u
(t

)
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Summary

This lecture

1. Linearization

2. Transfer Function

3. Block Diagram Representation

4. Transient Response

Next lecture

• Step Response Analysis

• Frequency Response

• Relation between Model Descriptions
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