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From Lecture 1

e PID-control

e State-space model of plant



Linearization



Linearization - ?

Many systems are nonlinear. However, one can approximate them with
linear ones. This to get a system that is easier to analyze.

A few examples of nonlinear systems:

e Water tanks (Lab 2)

e Air resistance

Action potentials in neurons

Pendulum under the influence of gravity
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Given a nonlinear system x = f(x, u), y = g(x, u)
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Linearization - How?

Given a nonlinear system x = f(x, u), y = g(x, u)
1. Determine a stationary point (xo, tp) to linearize around

Xo =0 =4 f(Xo, UO) =0

2. Make a first order Taylor series expansions of f and g around

(x0, to):

0 0
f(x,u) =~ f(xo, o) + af(xo, up)(x — x0) + %f(xo, uo)(u — up)

0 0
g(x, u) = g(xo, to) + ag(Xoa up)(x — xo) + ag(xoa uo)(u — o)

Notice that f(xp, up) = 0 and let yo = g(xo, to)
3. Introduce Ax =x — xp, Au=u—ug and Ay =y — y
4. The state-space equations in the new variables are given by:

Ax=x—x = f(x,u) =~ %f(xo, ug)Ax + %f(xo, up)Au = AAx + BAu

0 0
Ay =g(x,u)—y = ag(xo, up)Ax + ag(xo, up)Au = CAx+ DAu a



Example - Linearization

Example
The dynamics of a specific system is described by

X1:X2
X3 =
X=—=+xx+vu+l
X
1

y=x +u

a) Find all stationary points

b) Linearize the system around the stationary point corresponding to
up = 3



The dynamics of a specific system is described by

% =50 = fi(x1, x2, u)
4

. X

XQZ_X% +x+Vu+1 = h(x1, x, u)
1

y =2+ = g(x1, X2, U)

(a) Find stationary point for up =3 : (%3 = x = 0)

0:X2
!
0:—X—22+X1+\/3+1
1
y=x}+3?

= (x10, X20,U0) = (-2, 0, 3)
¥o = g(x10, X0, tp) = 13



The dynamics of a specific system is described by

X1 = X2 = fi(xt, x2, u)
4

. X

X2:—X—22—|—X1+\/m :f2(X17X27 U)
1

y=X12+U2 :g(X17X27 u)

= (x10, X20,Up) = (—2, 0, 3)
Yo = g(x10, X0, o) = 13

(b) Linearize around stationary point (—2, 0, 3)

o oh of

— = — =1 =

Oxq 0, O0x2 ’ Ou ’

of 5 of; s of 1
72:_1_2)%4_1’ 72:_4)%7 72:77
0xq Xj 0x2 Xi ou 2v/u+1
98 _ o, %8 _y %8 _,

8x1 - aXQ



The dynamics of a specific system is described by

)'(1 =X = ﬁ.(Xh X2, U)
4

] X

X2:_;22+X1+m :f—2(X17X27 U)
1

y:xlz—&—u2 = g(x1, x, u)

= (x10, X20,u0) = (-2, 0, 3)
¥o = &(x10, X20, tp) = 13

(b) Linearize around stationary point (-2, 0, 3)

o, 06 R _
8X1\{x0,u0} ’ 8X2|{x0,u0} ’ 8U\{xo,ug}

o _1 of _0 ot _1
Oxy [{x0, o} ’ Ox [{x0, uo} ’ U |{x0, w} 4’
g 4 g ~0 g

37X1\{X0,uo} - 87X2|{x0,u0} a U {0, w0}



The dynamics of a specific system is described by

X1 =X = filx, %, u)
4
) X
)(2:—)722 —|—X1—|—\/m :"—2(X17X27 u)
1
_ 2 2 =
y=x{tu = g(x1, x2, u)

= (x10, X20,up) = (-2, 0, 3)
Yo = g(x10, X0, tp) = 13

(b) Linearize around stationary point (—2, 0, 3)

f(x,u) A - 01 f(x, u) _5

X |{x0, u} 10 Ou  |{x0, u}

g(X,U) _ ¢ - |:74 0} g(X,U) - D
3u ‘{Xo,uo}

OX  |{x0, wo}

—



The dynamics of a specific system is described by

X1 = Xo = fl(Xlz X2, Ll)
4

. X

x2:—X—22+X1+\/u—|—1 = f(x1, x2, U)
1

y:X12+U2 :g(X17X27 U)

= (x10, X20,U0) = (=2, 0, 3)
¥o = g(x10, X0, tp) = 13

Introduce
Ax; = x1 — X105 Axy = Xp — Xo0

Au=u—u Ay=y-—y

The state-space equations in the new variables are given by:

l@;] B [0 1] [ax 0]
S| 1 of [ax| |4
o= o of[32] 1)




Transfer Function



Laplace Transformation

Let f(t) be a function of time t, the Laplace transformation £(f(t))(s) is

defined as -
LIFB)(s) = F(s) = / = (1)dt
0

Example:

df(t

L (( )> (s) = sF(s) — f(0)
dt
Initial values helps to calculate what happens in transient phase!

Assuming that f(0) = f/(0) = --- = f"~1(0) = 0 (common assumption

during this course, but not always!!) it has the property that

L <d;’;(f)) (s) = s"F(s)

L (/Ot f(T)Zi) (s) = %F(s) (integrator)

See Collection of Formulae for a table of Laplace transformations.



Example - Transfer Function

Example
A system's dynamics is described by the differential equation

y+ay+ay= b1t + byu.
After Laplace transformation we get
(s + a15 + ap) Y(s) = (b1s + by) U(s)

which can be written as
G(s)
bis + by

Y(s)= 2
(s) s+ a15+ a

U(s) = G(s)U(s)

G(s) is called the transfer function of the system.



Transfer Function

Relation between control signal U(s) and output Y(s):

Zeros of Q(s) are called zeros of the system, zeros of P(s) are called
poles of the system.

The poles play a very important role for the system’s behavior.



From State Space to Transfer Function

For a system on state space form

x = Ax + Bu
y = Cx+ Du

the transfer function is given by
G(s)=C(sl —A)B+D

Observe: the denominator of G(s) is given by P(s) = det(s/ — A), so
eigenvalues of A are poles of the system.

10



From Transfer Function to State Space

Can be done in several ways, see Collection of Formulae.

Example
A system'’s transfer function is

2s+1

6(s) = s3+4s—38

Write the system on a state space form of your choice.
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Three Ways to Describe a Dynamical System

Differential equation
y+ay + ay = biu+ bu

Collection of Formulae

State space /\ Transfer function

x = Ax+ Bu Y(s) = G(s)U(s) = L2 u(s)

y: CX+DU \/’ P(S)

G(s)=C(sl —A)'B+D

12



Block Diagram Representation




Block Diagram - Transfer Function

When the blocks in a block diagram are replaced by transfer functions, it
is possible to describe the relations between signals in an easy way.

13



Block Diagram - Components

Most block diagrams consist of three components:

e Blocks - Transfer functions
e Arrows - Signals

e Summations

R E U Y
Gr Gp

A 4

v

where R, E, U, Y are the Laplace transformations of the reference r(t),

control error e(t), control signal u(t), and output y(t), respectively.

14



Determine Transfer Function From Block Diagram

Gr

A 4
3
v

Y =GpU, U=GrE, E=R-Y
From the equations above the transfer function between r and y is

y_ _GrGr

=———R
1+ GpGgr

15



Example - Transfer Functions

Example
Two systems, G; and G, are interconnected as in the figure below

A 4

G

G2

Compute the transfer function from v to y, G,.

16



Transient Response




Solution to State Space Equation

Given a system on state space form

x = Ax + Bu
y = Cx+ Du

The solution, y(t), is then given by

t
y(t) = Cefx(0) + C / A By(r)dr + Dult)
0

— ~

Initial state,

) ) Weighted integral of Direct term, often
uninteresting except . .
) the control signal, neglectable in
when the controller is . . .
Interesting part practical systems

initialized

17



Impulse Response

Shows how the system responds when the input is a short pulse, i.e., a
Dirac function

u(t) = 4(t)

The Laplace transformation is

Hence

Not so common in technological applications, can we think of other
applications?

18



Example - Impulse Response

Let the transfer function of the system be:

2
Glg)= s2 43542

0.6
0.4 1




Step Response

Shows how the system responds when the input is a step, i.e.,

1 t>0
u(t) = -
0 t<O0

The Laplace transformation is

o0 o) 1 .
U(s) = / e tu(t)dt = / e Stdt = — = [e—st]o _
g 0

S

Very common in technological applications

20



Example - Step Response

Let the transfer function of the system be:
2

Glg)= s24+3s+2

1,
< 05} |
0 ‘ |
-2 0 2 4 6 8 10
t
I
1,
< 05| |
O ]
2 4 6 8 10



This lecture

1. Linearization
2. Transfer Function
3. Block Diagram Representation

4. Transient Response

Next lecture

e Step Response Analysis
e Frequency Response

e Relation between Model Descriptions
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